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Abstract. In this paper, using the shear construction method, we define two
subclasses of harmonic univalent functions in the unit disk that are the harmonic
shear of analytic functions and convex in the horizontal or vertical direction. For
these classes, certain equivalent conditions and convolution conditions are obtained.
Finally, inequalities that are both necessary and sufficient for the harmonic shears
of analytic functions involving Wright’s generalized hypergeometric functions are
derived.
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1. Introduction and preliminaries

Let SH denotes a class of functions f which are harmonic, univalent and orientation
preserving in the open unit disc ∆ = {z : |z| < 1} and are normalized by f(0) =
h(0) = fz(0) − 1 = 0. Since ∆ is simply connected, a function f ∈ SH has the
canonical representation given by h + g, where h and g are the members of linear
space A(∆) of all analytic functions in ∆ and where h and g can be written as a
power series representation

h(z) = z +
∞∑
n=2

anz
n, g(z) =

∞∑
n=1

bnz
n, |b1| < 1. (1)

We call h the analytic part and g the co-analytic part of f. A necessary and sufficient
condition for a harmonic function of the form f = h+ g to be locally univalent and
sense preserving in ∆ is that |g′(z)| < |h′(z)| for all z in ∆. The analytic dilatation
of a harmonic mapping f = h + g is defined by ω(z) = (g′(z)/h′(z)) . Thus if f is
locally univalent and sense preserving, then |ω(z)| < 1 in ∆.
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A subclass TSH of SH is well known in the literature. A function f = h + g is
said to be in the class TSH if h and g are of the form

h(z) = z −
∞∑
n=2

|an| zn and g(z) =
∞∑
n=1

|bn| zn, |b1| < 1. (2)

In case g(z) = 0, ∀z ∈ ∆, the class SH reduces to a well known class S of univalent
functions and the class T SH reduces to T introduced and studied by Silverman
[18, 19]. We further denote a subclass T S0H of T SH for which fz(0) = 0.

Recall that a domain D ⊂ C is said to be convex in the direction α (0 ≤ α < 2π) ,
if for all a ∈ C, the set D ∩ {a + teiα : t ∈ R} is either connected or empty. In
particular, a domain D ⊂ C is said to be convex in the horizontal direction (or a
CHD domain) if its intersection with each horizontal line is connected (or empty).
The domains which are convex in every direction are called convex domains.

We say a univalent harmonic function f is convex in the direction α (0 ≤ α < 2π)
if the domain f (D) is convex in the direction α. In particular, a univalent harmonic
function f is called a CHD map if its range is a CHD domain.

Construction of a univalent harmonic mapping f with prescribed dilatation ω
can be done effectively by a method known as the “shear construction” method
which was devised by Clunie and Sheil-Small [8] (see also [9, 10, 11, 15]). The basic
shear construction theorem of a harmonic univalent function discovered by Clunie
and Sheil-Small [8] is as follows.

Theorem A: For analytic functions h and g, assume the harmonic function f =
h+g is locally univalent in a simply connected domain D. Then a univalent function
f maps D onto a CHD domain if and only if the analytic function h− g is univalent
and maps D onto a CHD domain.

We note that, if ϕ is a CHD map, for a given dilatation ω, the harmonic shear
f = h+g = h−g+2<{g} of ϕ can be obtained by solving the differential equations:

h′ − g′ = ϕ′, ωh′ − g′ = 0 (3)

with normalizations h(0) = ϕ(0) and g(0) = 0. Also, if κ is a map convex in vertical
direction, for a given dilatation ω, the harmonic shear f = h + g = h − g + 2<{g}
of κ is obtained by solving the differential equations:

h′ + g′ = κ′, ωh′ − g′ = 0 (4)

with normalizations h(0) = κ(0) and g(0) = 0.
We also have following result of Clunie and Sheil-Small [8].
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Theorem B: A functions f = h+ g is harmonic convex if and only if the analytic
functions h − eiαg, 0 ≤ α < 2π, are convex in the direction α

2 and f is suitably
normalized.

We mention here two examples given in [8] of constructing harmonic functions
by shearing the analytic functions in the horizontal direction and in the direction of
π
2 that is in the vertical direction, respectively, as follows:

Example 1. The harmonic Koebe function K = h+ g where

h(z) =
z − 1

2z
2 + 1

6z
3

(1− z)3
, g(z) =

1
2z

2 + 1
6z

3

(1− z)3
, z ∈ ∆

can be constructed by the horizontal shear of the Koebe function k(z) = z
(1−z)2 with

the dilation ω(z) = z.

Example 2. The harmonic function L = h+ g where

h(z) =
z − 1

2z
2

(1− z)2
, g(z) =

−1
2z

2

(1− z)2
, z ∈ ∆

can be constructed by the vertical shear of the function l(z) = z
1−z with the dilation

ω(z) = −z.

Example 3. The harmonic function f = z − 1
2z

2 is the harmonic shear of a poly-

nomial function φ(z) = z + z2

2 with the dilation ω(z) = −z.

Example 4. The harmonic function f = z + 1
3z

2 is the harmonic shear of a poly-

nomial function φ(z) = z + z3

3 with the dilation ω(z) = z2.

Note that in Examples 1 and 2, h(z) and g(z) are the solutions of the system of
equations given by (3) and (4), respectively, for the cases ϕ(z) = k(z), ω(z) = z and
κ(z) = l(z), ω(z) = −z.

We consider the following two subclasses T [A,B] and C [A,B] of T

Definition 1. [16] A function h ∈ T of the form given in (2) is said to be in
T [A,B] if, for some constant A and B such that −1 ≤ B < A ≤ 1, it satisfies

∞∑
n=2

{
(n− 1)

1−B
A−B

+ 1

}
|an| ≤ 1;

and is said to be in the class C [A,B] , if zh′ ∈ T [A,B] .
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We observe that the functions of the classes T [A,B] and C [A,B] are univalent.
Note that the class T [1,−1] = T ∗ was studied in [18, 19].

In view of Theorems A and B and by Examples 1 and 2, we now define classes
TH [A,B] and CH [A,B] .

Definition 2. Let a function φα defined by

φα(z) = Hα(z)− e2iαGα(z) (5)

be convex in the direction α ∈ {0, π/2} , where

Hα(z) = z −
∞∑
n=2

|an|
1− e2iα |b1|

zn, Gα(z) =
∞∑
n=2

|bn|
1− e2iα |b1|

zn (6)

are analytic in ∆, |b1| < 1 and α ∈ {0, π/2}). Then the harmonic shear Fα =
Hα+Gα of φα, is said to be in the class TH [A,B] if φα ∈ T [A,B]. Further, we say
that Fα = Hα +Gα is in the class CH [A,B] if zφ′α(z) ∈ T [A,B] .

We note that the analytic function φα considered in (5) may also be expressed
as

φα(z) =
h(z)− e2iαg(z)

1− e2iα |b1|
where h and g are of the form (2).

Here it is worth mentioning that for a CHD map φ0 defined by

φ0(z) = H0(z)−G0(z),

where

H0(z) = z −
∞∑
n=2

|an|
1− |b1|

zn, G0(z) =

∞∑
n=2

|bn|
1− |b1|

zn (7)

are analytic in ∆, |b1| < 1, there exists a dilatation ω0, such that the harmonic shear
F0 = H0 +G0 of φ0 may be obtained by solving the differential equations:

H ′0 −G′0 = φ′0, ω0H
′
0 −G′0 = 0.

Also, for a map φπ/2 convex in vertical direction, defined by

φπ/2(z) = Hπ/2(z) +Gπ/2(z),

where

Hπ/2(z) = z −
∞∑
n=2

|an|
1 + |b1|

zn, Gπ/2(z) =

∞∑
n=2

|bn|
1 + |b1|

zn (8)
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are analytic in ∆, there exists a dilatation ωπ/2, such that the harmonic shear Fπ/2 =

Hπ/2 +Gπ/2 of φπ/2 may be obtained by solving the differential equations:

H ′π/2 +G′π/2 = φ′π/2, ωπ/2H
′
π/2 −G

′
π/2 = 0.

In this paper, with the use of shear construction method we study classes TH [A,B]
and CH [A,B] of harmonic univalent functions Fα = Hα +Gα ∈ T S0H which are the
harmonic shear of analytic functions, convex in the direction α ∈ {0, π/2} (that is
convex in the horizontal direction or vertical direction) and are in the classes T [A,B]
and C [A,B] , respectively. Coefficient conditions that are both necessary and suffi-
cient for functions in the classes TH [A,B] and CH [A,B] are obtained. Convolution
conditions for these classes with the use of equivalent conditions are also derived.
Finally, inequalities which are both necessary and sufficient for the harmonic shears
of analytic functions involving Wright’s generalized hypergeometric functions are
obtained.

2. Main Lemma

Based on Definition 1 and motivated by the equivalent conditions of the class
T [A,B] found in [16], we can easily prove the equivalent conditions of the class
TH [A,B] as given in the next lemma. However, we first recall well-known defini-
tion of subordinate function.

A function f1 is subordinate to f2 in ∆ if there exists an analytic function w
with w(0) = 0 and |w(z)| < 1 such that f1(z) = f2(w(z)) for |z| < 1; this is written
as f1 ≺ f2. Furthermore, if the function f2 is univalent in ∆, then we have following
equivalence:

f1(z) ≺ f2(z)⇔ f1(0) = f2(0) and f1(∆) ⊂ f2(∆).

Lemma 1. Let φα(z) = Hα(z)− e2iαGα(z) be convex in the direction α ∈ {0, π/2} ,
where Hα and Gα are given by (6). Then its harmonic shear Fα = Hα+Gα ∈ T S0H ,
convex in the same direction α, is in TH [A,B] if and only if it satisfies any one of
the following conditions:

zφ′α(z)

φα(z)
≺ 1 +Az

1 +Bz
,−1 ≤ B < A ≤ 1, z ∈ ∆. (9)

∣∣∣∣∣∣
zφ′α(z)
φα(z)

− 1

A−B zφ′α(z)
φα(z)

∣∣∣∣∣∣ < 1,−1 ≤ B < A ≤ 1, z ∈ ∆. (10)
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<
(
zφ′α(z)

φα(z)

)
>

1−A
1−B

,−1 ≤ B < A ≤ 1, z ∈ ∆. (11)∣∣∣∣zφ′α(z)

φα(z)
− 1

∣∣∣∣ < A−B
1−B

,−1 ≤ B < A ≤ 1, z ∈ ∆. (12)

Proof. Let Fα = Hα + Gα ∈ T S0H where Hα and Gα are of the form (6). By
Definition 2, Fα ∈ TH [A,B] is convex in the direction α ∈ {0, π/2} if and only if
φα belongs to T [A,B] where φα is of the form

φα (z) = z −
∞∑
n=2

dnz
n (13)

and

dn =
|an|+ e2iα |bn|

1− e2iα |b1|
, n ≥ 2. (14)

But by Definition 1, φα ∈ T [A,B] if and only if the condition

∞∑
n=2

{
(n− 1)

1−B
A−B

+ 1

}
dn ≤ 1 (15)

holds, where dn is given by (14). It now suffices to prove that (15) is equivalent
to (9) to (12). Note that for a Schwarz function w analytic in ∆ with w(0) = 0,
|w(z)| < 1 in ∆, (9) can be given by

zφ′α(z)

φα(z)
=

1 +Aw(z)

1 +Bw(z)
,−1 ≤ B < A ≤ 1, z ∈ ∆

which equivalently be expressed by (10). For φα(z) of the form (13), we observe
that (10) is equivalent to∣∣∣∣ −

∑∞
n=2(n− 1)dnz

n

(A−B) z −
∑∞

n=2 (A−Bn) dnzn

∣∣∣∣ < 1, z ∈ ∆.

By using the fact <(z) ≤ |z| , and since, for real value of z, the quantity within the
mod sign in the above inequality is real, we have as z → 1−,∑∞

n=2(n− 1)dn
A−B −

∑∞
n=2 (A−Bn) dn

≤ 1

which establishes (15). Again, (11) is equivalent to∣∣∣∣∣∣
zφ′α(z)
φα(z)

− 1

1− 2β + zφ′α(z)
φα(z)

∣∣∣∣∣∣ < 1, z ∈ ∆
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where β = 1−A
1−B and for φα(z) of the form (13). The last inequality is equivalent to∣∣∣∣ −

∑∞
n=2(n− 1)dnz

n

2 (1− β) z −
∑∞

n=2 (1− 2β + n) dnzn

∣∣∣∣ < 1, z ∈ ∆.

Using the above used argument, as z → 1−along real line, we obtain (15). Further,
for φα(z) of the form (13), the condition (12) is equivalent to∣∣∣∣−∑∞n=2(n− 1)dnz

n

z −
∑∞

n=2 dnz
n

∣∣∣∣ < A−B
1−B

, z ∈ ∆.

which again using the above used argument, yields (15). This proves Lemma 1.

Note that the condition (9) is considered in [7]. Classes TH [1,−1] =: T S0∗H and
CH [1,−1] =: K0

H are studied in [20] and [21]. A class of close-to-convex harmonic
functions, by using transforming (shearing) a convex analytic functions, is studied by
Jahangiri and Silverman [12]. Recently, results on growth, distortion and coefficient
bounds are obtained in [5] for harmonic functions (constructed by shearing method)
convex in both the horizontal and vertical directions.

3. Certain Equivalent Conditions

We first derive the coefficient inequalities which are both necessary and sufficient
for the functions Fα = Hα +Gα ∈ T S0H (convex in the direction α ∈ {0, π/2} where
Hα and Gα are of the form (6), to be in the classes TH [A,B] and CH [A,B] . We
assume throughout this section that the coefficients of Hα and Gα in (6) satisfy the
condition: |bn| < |an| , n ≥ 2.

Theorem 2. Let φα(z) = Hα(z) − e2iαGα(z) ∈ T [A,B] be convex in the direction
α ∈ {0, π/2} , where Hα and Gα are given by (6). Also, suppose Fα = Hα + Gα ∈
T S0H is the harmonic shear of φα and convex in the same direction α. Then Fα ∈
TH [A,B] if and only if the coefficient inequality

∞∑
n=2

{
(n− 1)

1−B
A−B

+ 1

}
|an|+ e2iα

∞∑
n=1

{
(n− 1)

1−B
A−B

+ 1

}
|bn| ≤ 1 (16)

holds. The result is sharp.

Proof. Following initial lines of the proof of Lemma 1, we have Fα ∈ TH [A,B] if
and only if (15) holds. In view of (14), the inequality (15) can also be given by (16).
Sharpness of (16) can easily be verified for the function given by

f(z) = z −
∞∑
n=2

(A−B) |xn|
(n− 1)(1−B) +A−B

zn +

∞∑
n=2

(A−B) |yn|
(n− 1)(1−B) +A−B

zn,
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where for α ∈ {0, π/2} ,
∑∞

n=2 |xn|+ e2iα
∑∞

n=1 |yn| = 1.

In particular, taking α = 0 and α = π/2, respectively, in Theorem 2, we get
following results for CHD map and for the map convex in vertical direction.

Corollary 3. Let φ0(z) = H0(z)−G0(z) ∈ T [A,B] be a CHD map, where H0 and
G0 are given by (7). Also, suppose F0 = H0 + G0 ∈ T S0H is the harmonic shear of
φ0 and convex in the horizontal direction. Then F0 ∈ TH [A,B] if and only if the
coefficient inequality

∞∑
n=2

{
(n− 1)

1−B
A−B

+ 1

}
|an|+

∞∑
n=1

{
(n− 1)

1−B
A−B

+ 1

}
|bn| ≤ 1

holds. The result is sharp.

Corollary 4. Let φπ/2(z) = Hπ/2(z) + Gπ/2(z) ∈ T [A,B] be convex in vertical

direction, where Hπ/2 and Gπ/2 are given by (8). Also, suppose Fπ/2 = Hπ/2+Gπ/2 ∈
T S0H is the harmonic shear of φπ/2 and convex in the vertical direction. Then
Fπ/2 ∈ TH [A,B] if and only if the coefficient inequality

∞∑
n=2

{
(n− 1)

1−B
A−B

+ 1

}
|an| −

∞∑
n=1

{
(n− 1)

1−B
A−B

+ 1

}
|bn| ≤ 1

holds. The result is sharp.

Theorem 5. Under the hypothesis of Theorem 2, the function Fα = Hα +Gα is in
CH [A,B] if and only if the coefficient inequality

∞∑
n=2

n

{
(n− 1)

1−B
A−B

+ 1

}
|an|+ e2iα

∞∑
n=1

n

{
(n− 1)

1−B
A−B

+ 1

}
|bn| ≤ 1 (17)

holds. The result is sharp.

Proof. By Definition 2, Fα ∈ CH [A,B] if and only if zφ′α(z) convex in the direction
α, belongs to T [A,B] where zφ′α(z) is of the form

zφ′α(z) = z −
∞∑
n=2

ndnz
n

and dn is given by (14). Hence, by Definition 1, it follows that F ∈ CH [A,B] if and
only if

∞∑
n=2

n

{
(n− 1)

1−B
A−B

+ 1

}
|an|+ e2iα |bn|

1− e2iα |b1|
≤ 1. (18)
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This inequality is equivalent to (17). Sharpness can be verified for the functions
given by

F (z) = z −
∞∑
n=2

(A−B) |xn|
n {(n− 1)(1−B) +A−B}

zn +

∞∑
n=2

(A−B) |yn|
n {(n− 1)(1−B) +A−B}

zn

where for α ∈ {0, π/2} ,
∑∞

n=2 |xn|+ e2iα
∑∞

n=1 |yn| = 1.This completes the proof of
Theorem 5.

In particular, taking α = 0 and α = π/2, respectively, in Theorem 5, we get
following results for CHD map and for the map convex in vertical direction.

Corollary 6. Under the same hypothesis of Corollary 3, the function F0 = H0 +
G0 ∈ CH [A,B] if and only if the coefficient condition

∞∑
n=2

n

{
(n− 1)

1−B
A−B

+ 1

}
|an|+

∞∑
n=1

n

{
(n− 1)

1−B
A−B

+ 1

}
|bn| ≤ 1

holds. The result is sharp.

Corollary 7. Under the same hypothesis of Corollary 4, the function Fπ/2 = Hπ/2+

Gπ/2 ∈ CH [A,B] if and only if the coefficient condition

∞∑
n=2

n

{
(n− 1)

1−B
A−B

+ 1

}
|an| −

∞∑
n=1

n

{
(n− 1)

1−B
A−B

+ 1

}
|bn| ≤ 1

holds. The result is sharp.

Remark 1. (1) Taking A = 1, B = −1 in Theorems 2 and 5, our results coincide
with the results obtained in [20] and [21] for the classes T S0∗H and K0

H .

(2) Taking A = 1, B = −1 and the coefficients bn = 0 (n ∈ N) in Theorem 2, our
result coincides with the one obtained by Silverman [18].

Further, on using the condition (11), we obtain other equivalent conditions for
functions belonging to the classes TH [A,B] and CH [A,B], respectively, as follows:

Theorem 8. Under the hypothesis of Theorem 2, Fα = Hα +Gα is in TH [A,B] if
and only if

<
[(

1−B
A−B

)(
H ′α(z)− e2iαG′α(z)

)
−
(

1−A
A−B

)(
Hα(z)− e2iαGα(z)

z

)]
> 0

holds in ∆.

207



P. Sharma, Om P. Ahuja, V.K. Gupta – Univalent Harmonic Functions . . .

Proof. By (11), F ∈ TH [A,B] if and only if

<
(
zφ′α(z)

φα(z)

)
>

1−A
1−B

.

Using φα(z) from (5) the result follows.

Taking A = 1, B = −1 in Theorem 8, we get following result for the class T S0∗H .

Corollary 9. Let φα(z) = Hα(z) − e2iαGα(z) ∈ T ∗ be convex in the direction
α ∈ {0, π/2} , where Hα and Gα are given by (6). Suppose Fα = Hα + Gα ∈ T S0H
is the harmonic shear of φα convex in the same direction α. Then Fα ∈ T S0∗H if
and only if

<
[(
H ′α(z)− e2iαG′α(z)

)]
> 0

in ∆.

Similar to Theorem 8, we get the following result for the class CH [A,B] .

Theorem 10. Under the hypothesis of Theorem 2, the function Fα = Hα + Gα is
in CH [A,B] if and only if

<
[(

1−B
A−B

)((
zH ′α(z)

)′
− e2iα

(
zG′α(z)

)′)
−
(

1−A
A−B

)(
H ′α(z)− e2iαG′α(z)

)]
> 0

in ∆.

Taking A = 1, B = −1 in Theorem 10, we get following result for the class K0
H .

Corollary 11. Under the hypothesis of corollary 9, the function Fα = Hα +Gα is
in K0

H if and only if

<
[((

zH ′α(z)
)′
− e2iα

(
zG′α(z)

)′)]
> 0

holds in ∆.

Remark 2. Similar to the Corollaries 3 to 7, we can get results from Theorems 8
and 10 and from Corollaries 9 and 11 for the functions convex in horizontal as well
as in vertical direction by taking α = 0 and α = π/2, respectively.
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4. Convolution Conditions

Using (9), we study convolution conditions for functions in the classes TH [A,B] and
CH [A,B].

Theorem 12. Under the hypothesis of Theorem 2, the function Fα = Hα + Gα is
in TH [A,B] if and only if for some ε (|ε| = 1),1

z

Hα(z) ∗

z + 1−Aeiθ
(A−B)eiθ

z2

(1− z)2

− εe2iα
z

Gα(z) ∗

z + 1−Aeiθ
(A−B)eiθ

z2

(1− z)2


 6= 0

(19)
in ∆.

Proof. Since
Fα ∈ TH [A,B]⇔ φα ∈ T [A,B]

where φα(z) is given by (5). Hence, by (9), φα ∈ T [A,B] if and only if

zφ′α(z)

φα(z)
6= 1−Aeiθ

1−Beiθ
,−π ≤ θ < π, z ∈ ∆.

On writing zφ′α(z) = φα(z) ∗ z
(1−z)2 , and φα(z) = φα(z) ∗ z

1−z , for z ∈ ∆, we get

φα ∈ T [A,B] if and only if

1

z

[{
1 +

(
1−Aeiθ

)
z

(A−B)eiθ

}
z

(1− z)2
∗ φα(z)

]
6= 0, (20)

Using φα(z) from (5), we obtain

1

z

[{
1 +

(
1−Aeiθ

)
z

(A−B)eiθ

}
z

(1− z)2
∗Hα(z)− e2iα

{
1 +

(
1−Aeiθ

)
z

(A−B)eiθ

}
z

(1− z)2
∗Gα(z)

]
6= 0.

Now using the fact that if z1 − z2 6= 0 and |z1| 6= |z2| , then z1 − εz2 6= 0, |ε| = 1,
we get the convolution condition (19). This proves Theorem 12.

Taking A = 1, B = −1 in Theorem 12, we get following result for the class T S0∗H .

Corollary 13. Under the hypothesis of corollary 9, the function Fα = Hα + Gα
∈ T S0∗H if and only if for some ε (|ε| = 1), the condition1

z

[
Hα(z) ∗

(
z + 1−eiθ

2eiθ
z2

(1− z)2

)]
− εe

2iα

z

[
Gα(z) ∗

(
z + 1−eiθ

2eiθ
z2

(1− z)2

)] 6= 0

holds in ∆.
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Theorem 14. Under the hypothesis of Theorem 2, the function Fα = Hα + Gα is
in CH [A,B] if and only if for some ε (|ε| = 1),

1

z

Hα(z) ∗

z +

(
1 +

2(1−Aeiθ)
(A−B)eiθ

)
z2

(1− z)3


−ε e2iαz

Gα(z) ∗

z +

(
1 +

2(1−Aeiθ)
(A−B)eiθ

)
z2

(1− z)3


 6= 0

(21)
in ∆.

Proof. Since
Fα ∈ CH [A,B]⇔ zφ′α ∈ T [A,B]

where φα(z) is given by (5). Hence, similar to the proof of Theorem 12, Fα ∈
CH [A,B] if and only if

1

z

[{
1 +

1−Aeiθ

(A−B)eiθ
z

}
z

(1− z)2
∗ zφ′α(z)

]
6= 0,

which by (5) gives

1

z

[{
1 +

1−Aeiθ

(A−B)eiθ
z

}
z

(1− z)2
∗
{
zH ′α(z)− e2iαzG′α(z)

}]

=
1

z

zH ′α(z) ∗

z + 1−Aeiθ
(A−B)eiθ

z2

(1− z)2

− e2iαzG′α(z) ∗

z + 1−Aeiθ
(A−B)eiθ

z2

(1− z)2


=

1

z

Hα(z) ∗ z

z + 1−Aeiθ
(A−B)eiθ

z2

(1− z)2

′ − e2iαGα(z) ∗ z

z + 1−Aeiθ
(A−B)eiθ

z2

(1− z)2

′

=
1

z

Hα(z) ∗

z +

(
1 +

2(1−Aeiθ)
(A−B)eiθ

)
z2

(1− z)3

− e2iαGα(z) ∗

z +

(
1 +

2(1−Aeiθ)
(A−B)eiθ

)
z2

(1− z)3


 6= 0.

Again, by using the same fact that if z1 − z2 6= 0 and |z1| 6= |z2| , then z1 − εz2 6=
0, |ε| = 1, we obtain the convolution condition (21).

Taking A = 1, B = −1 in Theorem 14, we get following result for the class K0
H .
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Corollary 15. Under the hypothesis of corollary 9, the function Fα = Hα +Gα ∈
K0
H if and only if for some ε (|ε| = 1),

1

z

Hα(z) ∗

z +
(

1 + 1−eiθ
eiθ

)
z2

(1− z)3

− ε e2iα
z

Gα(z) ∗

z +
(

1 + 1−eiθ
eiθ

)
z2

(1− z)3

 6= 0

in ∆.

Remark 3. Similar to the Corollaries 3 to 7, we can get results from Theorems 12
and 14 and from Corollaries 13 and 15 for the functions convex in horizontal as well
as in vertical direction by taking α = 0 and α = π/2, respectively.

5. Applications to Wright’s Functions

In this section we obtain results, similar to Theorems 2 and 5, for the harmonic
functions defined by shearing of certain analytic functions which involve Wright’s
generalized hypergeometric (Wgh) functions.

The Wgh functions have an increasingly significant role in various types of ap-
plications (see [22, 23]). Generalized hypergeometric functions, generalized Mittag-
Leffler functions and Bessel-Maitland (Wright generalized Bessel) functions are some
special cases of Wgh functions; one may refer to [24, 25]. Several results on harmonic
functions by involving hypergeometric functions have recently been studied in [1] to
[4]. Involvement of the Wright generalized hypergeometric function (Wgh) in the
harmonic functions has recently been investigated amongst others in [6, 13, 14, 17].

Let Ai > 0 (i = 1, ..., p) and Bi > 0 (i = 1, ...., q) such that 1 +
∑q

i=1Bi −∑p
i=1Ai ≥ 0. Following the definition and terminology in [22], [24] and [26], a

Wright’s generalized hypergeometric (Wgh) function for non-negative integers p and

q, αi ∈ C
(
αi
Ai
6= 0,−1,−2, ...; i = 1, ...., p

)
and βi ∈ C

(
βi
Bi
6= 0,−1,−2, ...; i = 1, ...., q

)
is defined by

pψq ([(αi, Ai)] ; z) ≡ pψq

[(
(αi, Ai)1,p
(βi, Bi)1,q

)
; z

]
=

∞∑
n=0

p∏
i=1

Γ (αi + nAi)

q∏
i=1

Γ(βi + nBi)

zn

n!
, z ∈ ∆. (22)

By involving Wgh functions as defined by (22), consider an analytic function
Φα(z) defined by

Φα(z) =
W1(z)− e2iαW2(z)

1− e2iαd1
, z ∈ ∆ (23)
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where

W1(z) = z

q∏
i=1

Γ(βi)

p∏
i=1

Γ (αi)
pψq

[(
(αi, Ai)1,p
(βi, Bi)1,q

)
; z

]
, (24)

W2(z) =

s∏
i=1

Γ(δi)

r∏
i=1

Γ (γi)
rψs

[(
(γi, Ci)1,r
(δi, Di)1,s

)
; z

]
− 1 (25)

and

d1 =

r∏
i=1

(γi)Ci

s∏
i=1

(δi)Di

(26)

for positive integers Ai, Bi, Ci, and Di and for αi > −Ai (i = 1, ..., p) , satisfying
p∏
i=1

(αi)Ai < 0, and βi. > 0 (i = 1, ..., q) , γi > 0 (i = 1, ..., r) , δi > 0 (i = 1, ..., s)

with
r∏
i=1

(γi)nCi

s∏
i=1

(δi)nDi

<

n

∣∣∣∣ p∏
i=1

(αi)Ai

∣∣∣∣ p∏
i=1

(αi +Ai)(n−2)Ai

q∏
i=1

(βi)(n−1)Bi

, n ≥ 2;

r∏
i=1

(γi)Ci

s∏
i=1

(δi)Di

< 1.

In view of the parametric constraints cosidered above and
p∏
i=1

(αi)Ai < 0, we have

p∏
i=1

Γ (αi) =

p∏
i=1

Γ (αi +Ai)

p∏
i=1

(αi)Ai

= −

p∏
i=1

Γ (αi +Ai)∣∣∣∣ p∏
i=1

(αi)Ai

∣∣∣∣
and hence, the function Φα(z) defined by (23) may also be written in the form

Φα(z) = Hα(z)− e2iαGα(z) (27)

where

Hα(z) = z−

∣∣∣∣ p∏
i=1

(αi)Ai

∣∣∣∣ q∏
i=1

Γ (βi)

p∏
i=1

Γ (αi +Ai)

∞∑
n=2

θn
1− e2iαd1

zn,Gα(z) =

s∏
i=1

Γ(δi)

r∏
i=1

Γ (γi)

∞∑
n=2

φn
1− e2iαd1

zn

(28)
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and

θn =

p∏
i=1

Γ (αi + (n− 1)Ai)

q∏
i=1

Γ(βi + (n− 1)Bi)

1

(n− 1)!
, φn =

r∏
i=1

Γ (γi + nCi)

s∏
i=1

Γ(δi + nDi)

1

n!
, (29)

d1 is given by (26). Using Φα(z) defined by (27), we get a harmonic shear Fα =
Hα + Gα and we obtain following results.

Theorem 16. Under the parametric conditions stated as above, let Hα and Gα
be functions of the form (28) with θn, φn given by (29). Let Φα(z) = Hα(z) −
e2iαGα(z) ∈ T [A,B] be convex in the direction α ∈ {0, π/2} and Fα = Hα + Gα ∈
T S0H be its harmonic shear, convex in the same direction α.Then Fα = Hα + Gα ∈
TH [A,B] if and only if the inequality

∞∑
n=2

∣∣∣∣ p∏
i=1

(αi)Ai

∣∣∣∣ q∏
i=1

Γ (βi)

p∏
i=1

Γ (αi +Ai)

{
(n− 1)

1−B
A−B

+ 1

}
θn (30)

+e2iα
∞∑
n=1

s∏
i=1

Γ(δi)

r∏
i=1

Γ (γi)

{
(n− 1)

1−B
A−B

+ 1

}
φn

≤ 1

is satisfied.

Proof. Similar to the proof of Theorem 2, we have Fα = Hα + Gα ∈ TH [A,B] ⇔
Φα(z) = Hα(z) − e2iαGα(z) ∈ T [A,B] . On using (27) and (28), by Definition 1,
Φα ∈ T [A,B] if and only if

1

1− e2iαd1

∞∑
n=2

{
(n− 1)

1−B
A−B

+ 1

}
∣∣∣∣ p∏
i=1

(αi)Ai

∣∣∣∣ q∏
i=1

Γ (βi)

p∏
i=1

Γ (αi +Ai)

θn + e2iα

s∏
i=1

Γ(δi)

r∏
i=1

Γ (γi)

φn

 ≤ 1.

Substituting d1 from (26) and simplifying the result follows.

The proof of next result is similar to Theorem 16.
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Theorem 17. Under the hypothesis of Theorem 16, the function Fα = Hα + Gα ∈
CH [A,B] if and only if the inequality

∞∑
n=2

∣∣∣∣ p∏
i=1

(αi)Ai

∣∣∣∣ q∏
i=1

Γ (βi)

p∏
i=1

Γ (αi +Ai)

n

{
(n− 1)

1−B
A−B

+ 1

}
θn (31)

+e2iα
∞∑
n=1

s∏
i=1

Γ(δi)

r∏
i=1

Γ (γi)

n

{
(n− 1)

1−B
A−B

+ 1

}
φn

≤ 1

is satisfied.

We next consider an analytic function Ψα(z) defined by

Ψα(z) =
z
(

2− W1(z)
z

)
− e2iαW2(z)

1− e2iαd1
, z ∈ ∆ (32)

where W1(z) and W2(z) are of the form (24) and (25), d1 is given by (26) for
positive integers Ai, Bi, Ci, Di and for αi > 0 (i = 1, ..., p) , βi. > 0 (i = 1, ..., q) ,
γi > 0 (i = 1, ..., r) , δi > 0 (i = 1, ..., s) with

r∏
i=1

(γi)nCi

s∏
i=1

(δi)nDi

<

n
p∏
i=1

(αi)(n−1)Ai

q∏
i=1

(βi)(n−1)Bi

, n ≥ 1.

The function Ψα(z) may also be written in the form

Ψα(z) = Lα(z)− e2iαGα(z) (33)

where

Lα(z) = z −

q∏
i=1

Γ (βi)

p∏
i=1

Γ (αi)

∞∑
n=2

θn
1− e2iαd1

zn, (34)

Gα(z), d1 and θn are given as above. Using the method of proof in Theorems 16 and
17, we obtain next two theorems.
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Theorem 18. Under the parametric conditions stated as above, let Lα and Gα
be given by (34) and (28), respectively, with θn, φn given by (29). Let Ψα(z) =
Lα(z) − e2iαGα(z) ∈ T [A,B] be convex in the direction α ∈ {0, π/2} and Eα =
Lα + Gα ∈ T S0H be its harmonic shear, convex in the same direction α. Then, the
function Eα = Lα + Gα ∈ TH [A,B] if and only if

∞∑
n=2

q∏
i=1

Γ (βi)

p∏
i=1

Γ (αi)

{
(n− 1)

1−B
A−B

+ 1

}
θn+e2iα

∞∑
n=1

s∏
i=1

Γ(δi)

r∏
i=1

Γ (γi)

{
(n− 1)

1−B
A−B

+ 1

}
φn ≤ 1

is satisfied.

Theorem 19. Under the hypothesis of Theorem 18, the function Eα = Lα + Gα ∈
CH [A,B] if and only if

∞∑
n=2

q∏
i=1

Γ (βi)

p∏
i=1

Γ (αi)

n

{
(n− 1)

1−B
A−B

+ 1

}
θn+e2iα

∞∑
n=1

s∏
i=1

Γ(δi)

r∏
i=1

Γ (γi)

n

{
(n− 1)

1−B
A−B

+ 1

}
φn ≤ 1,

is satisfied.

Remark 4. Taking Ai = 1 (i = 1, ..., p) , Bi = 1 (i = 1, ..., q) , Ci = 1 (i = 1, ..., r) ,
Di = 1 (i = 1, ..., s) , in Theorems 16, 17, 18 and 19, we can easily get results for
functions involving generalized hypergeometric functions and various special form of
hypergeometric functions discussed in [6, 14, 16] etc.
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