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Abstract. In this paper, we elaborate a new method for solving an optimal
terminal control problem for a linear dynamic system. The control is bounded
constant piecewise function. This method consists of three procedures : method of
discretization, interior-points method and final procedure. Simulations demonstrate
the effectiveness of the proposed method and the results obtained were illustrated
by numerical example.
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1. Introduction

Methods for solving optimal control problems existing in literatures are of two types
: direct and indirect methods. The direct method is based on the discretization [1]-
[5], [9], [11]. Only this method gives an approximate solution. The indirect method
is based on the Pontryagin’s maximum principle [8], [10], [12]. But this principle
gives only necessary condition.

The aim of this paper is to show that the solution of continuous problem is
different the solution of its discrete problem. For solving our problem, we have
elaborated a new approach based in three procedures :

1. Discretization.

2. Interior-points method [5].

3. Final procedure.
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The method of resolution is based in first part on a discretization of the control at
regular intervals. The second part, we applied a method of interior points adapted
from the simplex method (adaptive method), this method was elaborated by the
authors R.Gabasov and F.Kirillov during the years 1980 [5]. Here we prove that the
solution of the discrete problem is not optimal for the initial problem. Therefore,
using the solution of the discrete problem, we have introduced another step called
final procedure based on Newton’s method, who we have given an optimal solution
for the initial problem. An implementation under the Matlab environment has been
developed for this method. In the implementation, at first we have checked the con-
trollability of our problem [7]. Thereafter, we have elaborated the three procedures:
discretization, adaptive method and final procedure. Finally, the efficiency of this
method are given by numerical example.

2. Statement of the problem, Basic Concepts and Definitions

Consider the following terminal optimal control problem. In the class of piecewise
continuous functions u(.) = (u(t), t ∈ [0, tf ]) :

J(u(t)) = c′x(tf ) −→ max, (1)

ẋ = Ax+ bu, x(0) = x◦ = 0, (2)

Hx(tf ) = g, (3)

d1 ≤ u(t) ≤ d2, t ∈ [0, tf ] = T, (4)

where, J(u(t)) is quality criterion, x(t) is the state n -vector of the dynamic system
at time t, x◦ is a given initial state vector of the system, u(t) is the controller action
(input signal) at time t is constant by piecewise and bounded by giving numbers d1
and d2, d1 and d2 are real numbers.tf is finally time. Hx(tf ) is the output signal
of the system at time tf equal to m -vectors g. A ∈ <n×n et H ∈ <m×n, b ∈ <m,
c′ ∈ <n are given constant matrices and vectors respectively. I = 1, 2, ..., m and J
= 1, 2, ..., n is index sets. The symbol ′ denotes transposition.

Definition 1. A control u(t), t ∈ T , and a corresponding trajectory x(t), t ∈ T ,
satisfying the constraints (2)-(4) are called admissible of the problem (1)-(4).

Definition 2. An admissible control u◦(.) = (u◦(t), t ∈ T ), and a corresponding
trajectory x◦(t), t ∈ T , are called optimal if the criterion (1) attains the maximum
value :

J(u◦(.)) = max
u

J(u(.)),
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where the maximum is found over all the admissible controls.

An admissible control uε(.) = (uε(t), t ∈ T ), and a corresponding trajectory xε(t), t ∈
T , is called ε-optimal if

J(u◦(.))− J(uε(.)) = c′x◦(tf )− c′xε(tf ) ≤ ε,

where u◦(.) is an optimal control of the problem (1) − (4) and ε is a nonnegative
number, fixed in advance.

By using the Cauchy formula, the solution of system (2) can be written in the
form

x(t) = F (t)(x◦ +

t∫
0

F (τ)−1bu(τ)dτ), t ∈ T, (5)

where F (t) = eAt, t ∈ T is the square n × n matrix defined by the relations
Ḟ (t) = AF (t), F (0) = In, In : identity matrix.

Using formula (5), the problem (1)− (4) takes the form of a problem of one variable
u : 

J(u(t)) =
tf∫
0

C(t)u(t)dt −→ max
u(t)

,

tf∫
0

p(t)u(t)dt = g,

d1 ≤ u(t) ≤ d2, t ∈ T,

(6)

where C(t) = c′F (tf )F (t)−1b, p(t) = HF (tf )F (t)−1b, t ∈ T .

Theorem 1. [7] The Kalman rank condition states that a linear autonomous system
of the form

ẋ(t) = Ax(t) + bu(t)

is controllable if and if the controllability matrix

C = [b, Ab,A2b, ..., An−1b]

is of rank n.

3. Support-control

We assume that the problem (1)− (4) is controllable.
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Definition 3. In the set T , we choose an arbitrary subset τB = {τj , j = 1,m} formed
of isolated times. The set τB is called a support of the problem (6) if detφB 6= 0,
where φB = {p(τj), j = 1,m}.

Using the support moments, we construct the subset TB =
m⋃
j=1

[τ j , τ j ], τ j
⋂
τ j =

∅, τ j = τj or τ j = τj .

Definition 4. The set of the moments TB is called generalized support if the support
matrix

φ(TB ) =

 τ j∫
τ j

p(t)dt, j = 1,m


is non-degenerate.

Remark 1. The support notion is very linked to the controllability notion of the
problem (1)− (4).

Definition 5. A pair {u, τB} formed from an admissible control u = (u(t), t ∈ T )
and a support τB called support-control of the problem (1)− (4).

4. The maximum principle

4.1. Formula of increment of quality criterion

Let {u, τB} be a support-control. Consider another admissible control ū(t) = u(t) +
4u(t) , t ∈ T and the corresponding trajectory x̄(t) = x(t) +4x(t) , t ∈ T .

Using the support τB , we construct the following vectors : y′ = (C(τj), j = 1,m)φ−1
B

,
∆(t) = −ψ′(t)b, t ∈ T are called multipliers and estimates (co-control) vectors ,
where ψ(t) is the solution of the system :

ψ̇ = −A′ψ,ψ(tf ) = C −H ′y (7)

called a conjugate system.

Then, the increment formula has the following form :

4J(u) = J(ū)− J(u) = −

tf∫
0

∆(t)4u(t)dt. (8)
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Of the admissibility u(t) and ū(t), we have :

d1 − u(t) ≤ 4u(t) ≤ d2 − u(t). (9)

According the equations (8) and (9), the maximum of the increment of quality
criterion is reached for :

4u(t) = d1 − u(t), si ∆(t) > 0,
4u(t) = d2 − u(t), si ∆(t) < 0,
d1 − u(t) ≤ 4u(t) ≤ d2 − u(t), si ∆(t) = 0, t ∈ T.

and equal to

β = β(u, τB ) =

∫
T+

∆(t)(u(t)− d1)dt+

∫
T−

∆(t)(u(t)− d2)dt,

where T+ = {t ∈ T/∆(t) > 0}, T− = {t ∈ T/∆(t) < 0}.
The quantity β(u, τB ) is called a suboptimality estimate of the support-control
{u, τB}.

Hence, the following inequality is always checked :

J(ū)− J(u) ≤ β(u, τB ),∀ū,

and for ū = u◦, we have:
J(u◦)− J(u) ≤ β(u, τB ).

Of this last inequality, the following result is deduced.

Theorem 2. [5](Optimality criterion) Following relations :
4u(t) = d1 − u(t), si ∆(t) > 0,
4u(t) = d2 − u(t), si ∆(t) < 0,
d1 − u(t) ≤ 4u(t) ≤ d2 − u(t), si ∆(t) = 0, t ∈ T.

(10)

are sufficient, and in the case of not degeneracy, they are necessary for the optimality
of support-control {u, τB}.

Remark 2. We can write the optimality criterion in the extremal form

ψ′(t)bu(t) = max
d1≤u(t)≤d2

ψ′(t)bu(t), t ∈ T. (11)
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Let us introduce the function (Hamiltonian)

H(x, ψ, u, t) = ψ′(Ax(t) + bu(t)).

In terms of the Hamiltonian, relation (11) can be written as follows :

H(x, ψ, u, t) = max
d1≤u(t)≤d2

H(x, ψ, u, t), t ∈ T (12)

The optimality criterion of support-control can be formulated as follows.

Maximum principle For optimality of the admissible control u(t), t ∈ T , it
is sufficient to have a support τB such that along the support-control {u, τB} and
the corresponding trajectories x(t), ψ(t), t ∈ T , of system (8) Hamiltonian attain
maximum value (12).
If {u, τB} is non-degenerate support-control then for optimality of the admissible
control u(t), t ∈ T , it is necessary that along {u, τB}, x(t), ψ(t), t ∈ T , relation (12)
be satisfied.

Now the criterion of suboptimality can be formulated as follows.

Theorem 3. [5](Suboptimality criterion or ε-optimality criterion) At any ε > 0.
An admissible control u(t), t ∈ T is ε-optimal if and only if there exists a support
τB of the problem such that following ε- maximum conditions are satisfied along the
corresponding solution ψ(t), t ∈ T :

H(x(t), ψ(t), u(t)) = max
d1≤u(t)≤d2

H(x(t), ψ(t), u(t))− ε(t)

with ∫ tf

0
ε(t)dt ≤ ε, t ∈ T.

4.2. Direct method for constructing the optimal controls

4.2.1. Introduction

The method suggested is iterative. We construct an algorithm based on three pro-
cedures :

1. Discretization.

2. Adaptive method.

128



O. Oukacha, M. Aidene – Direct Method of solving optimal control . . .

3. Final procedure.

The discretization is present by a passage of the continuous problem to the discrete
problem.

The adaptive method is called adaptive due to its property to use all the initial
and current information for effective construction of suboptimal admissible points.
This method be long to the same class as primal simplex method [5]. However the
simplex method uses not arbitrary points but special basic points all the non-support
(non-basic) components of which are critical. The only non-support component of
the admissible point is changed at iterations of the simplex-method. The support
(basis of the simplex method) is changed together with admissible point and its
degree of non-optimality can increase at iterations. To stop solving of the simplex
method uses (in the case of the existence of a solution) only the optimality criterion
since it has no suboptimality criterion at all. Moreover, the optimality criterion
for initial problem is tested by the equation (3). The final procedure is based on
Newton’s method, this method is applicable in the case where the difference of the
last equation is sufficiently small. In this stage, we have introduced another step for
algorithm called dual method, she permits of decrease this difference.

4.2.2. The discretization

Subdivide interval T to N subintervals [τj , τ
j ], with τ j − τj = h, h = (tf − 0)/N , be

the quantization step, N be a positive integer, and such that T =
N⋃
j=1

[τj , τ
j ].

As u(t) is constant by piecewise, then denote

u(t) ≡ uj , t ∈ [τj , τ
j ], j = 1, N.

Using this last formulas and equation (5), the initial problem becomes the prob-
lem of the following linear programming :

J(u) =
N∑
j=1

Cjuj −→ max,

N∑
j=1

qjuj = g,

d1 ≤ uj ≤ d2, j = 1, N

(13)

where Cj =
τ j∫
τj

C(t)dt, qj =
τ j∫
τj

p(t)dt. This problem will be solved by the adaptive

method [5].
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Finite iteration of the adaptive method : A method for solving the extremal
problem (13) is called finite if for any initial information it reveals unsolvability of
the problem or constructs an ε-optimal admissible point after a finite number of
operations. Every iteration of the adaptive method consists of a finite number of
elementary arithmetical and logical operations. Therefore to prove in the theorem
below that this method finite termination it is sufficient to show the finiteness of its
iteration number.

Theorem 4. [5] For d1 < ∞, d2 < ∞, n < ∞, m < ∞ and ε ≥ 0 the adap-
tive method starting with an arbitrary initial support-point constructs an ε-optimal
admissible point of very dually non-degenerate problem (13) in finite number of it-
erations.

Let {u◦, J◦
B

= {j = 1,m}} an ε-optimal solution of the problem (13) given by
the adaptive method.

Using this solution, we construct the solution of the initial problem. For this, let
us put τB = {τj , j ∈ J◦B} and the control u(t) = {u◦j , j ∈ J}, t ∈ T .

By using a support τB , we construct the co-control ∆(t) = −ψ′(t)b, t ∈ T , where
ψ(t) is given by the formula (8). The support τB is used to find the quasi-control
associated to ω(t), t ∈ T .

A quasi-control is defined as ω(t), t ∈ T

ω(t) =

{
d1, si ∆(t) ≥ 0,
d2, si ∆(t) < 0, t ∈ T (14)

and the corresponding quasi-trajectory χ(t) of the system (5).
If Hχ(tf ) = g, then the control ω(t), t ∈ T is optimal for the problem (1)− (4).

If Hχ(tf ) 6= g, then, we construct the vector:

λ(τB ) = φ(τB )−1.(g −Hχ(tf )). (15)

Let µ > 0 parameter of the method. If ‖λ(τB )‖ > µ, then change the support τB
to the support τ̄B by the dual method. If ‖λ(τB )‖ < µ, then we pass to the final
procedure.

4.3. Dual method

Let t◦ ∈ τB , such that |λ(t◦)| = max
t∈τ

B

|λ(t)| > µ. The change of the support τB to τ̄B

consists to change the co-control ∆(t) to ∆̄(t) = ∆(t) + σδ(t), t ∈ T , where δ(t) is
the direction and σ is the dual step along this direction.
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Compute the function :{
−∆(t)\δ(t), ∆(t)δ(t) < 0
0, otherwise,

and we construct the set :

T (σ) = {t ∈ T, σ(t) < σ}.

Hence, the speed of decrease of the dual quality criterion is equal to :

α(σ) = −|λ(t◦)|+ (d2 − d1)
∫

T (σ)

|δ(t)|dt.

By constructing α(0) < 0 and α(σ) ≤ α(σ̄) if σ < σ̄.
If α(σ) < 0 for σ > 0 then, the problem (1) − (4) does not admit admissible

controls. Otherwise, we construct a step σ◦ ≥ 0 such that α(σ◦−γ) < 0, α(σ◦+0) ≥ 0
for all such that 0 < γ ≤ σ◦. By using σ◦, we obtain t∗ ∈ T \ τB , a moment such
that:

∆(t∗) + σ◦δ(t∗) = 0, δ(t∗) 6= 0.

Then the new support is τ̄B = (τB\t◦)
⋃
t∗. If λ(τ̄B ) = 0, then the quasi-control (14)

constructed by the new support τ̄B is optimal of the problem (1)− (4).
If ‖λ(τ̄B )‖ > µ, we perform the next iteration starting from the support-control

{̄ω, τ̄B}.
If ‖λ(τ̄B )‖ < µ, we go to the final procedure.

4.4. The final procedure

We assume that the quasi-control ω and the corresponding quasi-trajectory χ, con-
structed by the support τB, and we have the condition ‖λ(τB )‖ < µ.

Let us T ◦ = {t ∈ T : ∆(t) = 0} the set of isolated times tj , j = 1,m and assume
that ∆̇(tj) 6= 0, j = 1,m.

The final procedure consists in constructing the solution τ◦
B

= {τ◦j , j = 1,m} of
the system of m nonlinear equations :

(d2 − d1)
m∑
j=1

sign∆̇(tj)

tj∫
τj

p(t)dt = g −Hχ(tf ), (16)

Obtain from the constraint
g−Hχ(tf ) = g−HF (tf )x◦−

∫
T

p(t)ω(t)dt, g−Hχ(tf ) = g−HF (tf )x◦−
∫
T
H

p(t)ω(t)dt−
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∫
T
B

p(t)ω(t)dt. Identifying the part non-support TH to zero and the part support TB

to µ.
We solve the system (16) by the Newton method using an initial approximation

τ◦
B

= {τ (◦)j , j = 1,m}, τ◦
B

= τB = {τj , j = 1,m}.
The (k + 1)th approximation τ (k+1)

B
, at a step k + 1 ≥ 1, is computed as :

τ (k+1)
B

= τ (k)
B

+
1

d2 − d1
{sign∆̇(tj)λj(τ

(k)
B

), j = 1,m},

where λ(τ (k)
B

) is a vector computed by the relation (15).
Then the function ω◦(t) = ω(t), t ∈ T , computed by the support τ◦

B
is an optimal

control of the problem (1)− (4).

5. Numerical example

The method analyzed in last section has been experimentally implemented. We
shall present in this section preliminary computational results that demonstrate its
efficiency on optimal control problem.

To illustrate of the results obtained here, we consider the terminal problem of
the following optimal control :

J(u) = x2(3) −→ max,
ẋ1(t) = x2(t), x1(0) = 0,
ẋ2(t) = x3(t), x2(0) = 0,
ẋ3(t) = u(t), x3(0) = 0,
x1(3) = 1,
|u(t)| ≤ 1, t ∈ T = [0, 3],

where A =

 0 1 0
0 0 1
0 0 0

, b =

 0
0
1

, c =
(

0 1 0
)
, H =

(
1 0 0

)
, g = 1.

Starting with three empty stats, we demand to determine the optimal control
u(t) allows to maximize x2(3) under the constraint x1(3) = 1. By using the algorithm
implemented under Matlab. Begin with discretizing this problem by using N periods.
Therefore, we solved by the adaptive method. Finally, we have applied a final
procedure. Here, we have realized a numerical comparison between the optimal
solution obtaining by the adaptive method and the optimal solution of the initial
problem. The following table contains the numerical results : where Jd(u) : is the
quality criterion of the problem (1) − (4). Jc(u) : is the quality criterion of the
problem (13).
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Table 1: Numerical results for the two problem (1) - (4) and (13)

N J◦
B

Jd(u) τB Jc(u) Hχ(tf ) Time(s)

10 2 1.9588 0.6000 1.2600 0.1080 2.4836
100 16 1.9810 0.4800 1.8504 0.8343 3.2062
1000 152 1.9812 0.4560 1.9719 0.9882 19.1502
10000 1514 1.9812 0.4542 1.9811 0.9999 944.8169
20000 3028 1.9812 0.4542 1.9811 0.9999 3370.5000

From these results, we find that the optimal solution of the problem discretized
does not optimal of the continuous problem , for different values of the number N ,
the quantity Hχ(tf ) is not equal to g and the quality criterion value does not wait
the optimal value, but where the number N is very high.

6. Conclusion

A new method of solving of a terminal problem of a linear dynamic system with
controls constants by piecewise, is proposed. She is consisted of a fusion between the
approach of the linear programming (Adaptive method) and nonlinear programming
(Newton’s method).
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