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DIFFUSION EQUATION BY USING CRANK NICHOLSON

METHOD
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Abstract. In this study, we consider approximate solution of Time-Fractional
Diffusion Equation (TFDE) by using Crank-Nicholson Method. Besides, we uti-
lize property of Riemann-Liouville derivative to obtain this solution. Then, we draw
three dimensional graphics of this solution by means of programming language Map-
ple. Finally, we show table including error analysis for some values of α, x, t, M
and N. Numerical results ensure to illustrate the effectiveness and reliability of this
method.
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1. Introduction

The exploration of solutions of nonlinear fractional differantial equations has a very
important role in several sciences such as biology, system identification, physics,
viscoelasticity, signal processing, probability and statistics, mechanical engineering,
hydrodynamics, chemistry, solid state physics, finance, optical fibers, fluid mechan-
ics, electric control theory, thermodynamics, heat transfer and fractional dynamics
[1, 2]. In recent years, most authors have improved a lot of methods to find solutions
of fractional differantial equations such as variational iteration method [3], homo-
topy decomposition method (HDM) [4], generalized Kudryashov method [5, 6], the
modified Gauss elimination method [7], the Sinc-Legendre collocation method [9].

Time-fractional diffusion equation recently takes attention because it is a highly
beneficial tool to identify problems involving non-Markovian random walks. This
type of equation is procured from standard diffusion equation by substituting the
first-order time derivative with a fractional derivative of α. The diffusion equation
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defines the propagation of particles from a region of higher concentration to a re-
gion of lower concentration due to collisions of the molecules and Brownian motion.
While time-fractional diffusion equation is a generalization of the classical diffusion
equation, which is procured from standard diffusion equation by substituting the
first-order time derivative with a fractional derivative of α. It can be utilized to
treat sub-diffusive flow process, in which the net motion of the particles happens
more slowly than Brownian motion [12].

The development of numerical methods seems to be very substantial and nec-
essary for solving fractional differential equations. Many authors have used to find
solutions a lot of methods of time-fractional diffusion equations such as the modi-
fied Gauss elimination method [7], the Sinc-Legendre collocation method [9], Kansa
method [10], Galerkin spectral method and Legendre collocation method [11], Von
Neumann method [12], AOR method [13], Chebyshev collocation method [14], op-
timal homotpy analysis method [15], implicit finite difference approximation [16],
regularization technique [17], the iterated Brownian motion [18], Green functions
[19], semi-discrete finite element method [20], the backward problem [21], probabil-
ity distributions [22], Wright functions [23], the methods of seperation of variable and
Laplace transform [24], variational iteration method [25], and many more [26, 27].

In this paper, our aim is to obtain approximate solutions time-fractional diffusion
equations by using Crank Nicholson method and compare analytical and approxi-
mate solutions. In Sec. 2, we give discrete approximation of fractional derivative. In
Sec. 3, we present the fundamentals of Crank-Nicholson method for fractional order
diffusion equation. In Sec. 4, as an application, we introduce numerical analysis of
time-fractional diffusion equation by using Crank-Nicholson method. Also, we draw
three dimensional graphics of approximate solutions that is obtained in this paper
and give error analysis for different values of α.

2. Discrete Approximation of Fractional Derivative

For positive integers M and N, the grid magnitudes in space and time for finite
difference algorithm are described by h = 1/M and k = 1/N , consecutively. The
grid points in the space interval [0,1] are the numbers xi = ih, i = 0, 1, 2, ...,M , and
the grid points in the time interval [0,1] are demonstrated tn = nk, i = 0, 1, 2, ..., N .
The values of the functions U and f at the grid points are indicated Un

i = U(tn, xi)
and fn

i = f(tn, xi),consecutively.
Such as Crank Nicholson difference scheme, we will take from Ref.[8] a discrete

approximation to the fractional derivative ∂αu(x,t)
∂tα at (tn+ 1

2
,xi). If we take R(t) =

1
Γ(1−α)

∫ t
0

u(s,x)
(t−s)αds, we obtain
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∂αU(tn+ 1
2
,xi)

∂tα
=

∂

∂t
R
(
tn+ 1

2
,xi

)
=

R(tn+1, xi)−R(tn, xi)

k
+O(k2). (1)

From here, approximations for R(tn+1, xi) and R(tn, xi) are obtained as following

R(tn+1, xi) =
1

Γ(1− α)

∫ tn+1

0

u(s, x)

(tn+1 − s)α
ds

= k
n∑

j=0

(aj − jbj)U
n−j
i − k

n∑
j=0

(aj − (j + 1)bj)U
n−j+1
i , (2)

R(tn, xi) =
1

Γ(1− α)

∫ tn

0

u(s, x)

(tn − s)α
ds

= k
n∑

j=1

(aj−1 − (j − 1)bj−1)U
n−j
i − k

n∑
j=1

(aj−1 − (j)bj−1)U
n−j+1
i , (3)

where aj =
k−α

(2−α)Γ(1−α) [(j+1)2−α−j2−α] and bj =
k−α

(1−α)Γ(1−α) [(j+1)1−α−j1−α].
Consequently, we have attained the following approximation

∂αU(tn+ 1
2
,xi)

∂tα
∼=

n+1∑
j=0

wn,jU
n−j+1
i (4)

where
wn,0 = b0 − a0,

wn,1 =

{
3a0 − a1 + 2b1 − b0, if n = 0
2a0 − a1 + 2b1 − b0, if n > 0

,

wn,j =

{
−aj−2 + 2aj−1 − aj + (j − 2)bj−2 − (2j − 1)bj−1 + (j + 1)bj , if j = 2, ..., n
an − an−1 + (n− 1)bn−1 − nbn, if j = n+ 1

.

Additionally, we get from Ref. [8]

∂2U(tn+ 1
2
,xi)

∂x2
=

1

2

[Un+1
i+1 − 2Un+1

i + Un+1
i−1

h2
+

Un
i+1 − 2Un

i + Un
i−1

h2

]
+O(h2). (5)

3. Crank-Nicholson Method for Fractional Order Diffusion
Equation

We consider the following diffusion equation,

∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
= f(x, t). (6)
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Taking into consideration 0 ≤ n ≤ N −1, 1 ≤ i ≤ M −1, we obtain the following
equation by substituting Eqs. (4) and (5) into Eq. (6),

n+1∑
j=0

wn,jU
n+1−j
i −

[Un+1
i+1 − 2Un+1

i + Un+1
i−1

2h2
+

Un
i+1 − 2Un

i + Un
i−1

2h2

]
= f

(
tn +

k

2
, xi

)
,

(7)
which are

U0
i = r(xi), 1 ≤ i ≤ M − 1 , Un

0 = Un
M = 0, 0 ≤ n ≤ N.

Then regulating this system, we get

f
(
tn+

k

2
, xi

)
=

(
− 1

2h2

)
Un+1
i+1 +Un

i+1+

n+1∑
j=0

wn,jU
n+1−j
i +

1

h2
Un+1
i

+
1

h2
Un
i +

(
− 1

2h2

)
Un+1
i−1 + Un

i−1, (8)

which are

U0
i = r(xi), 1 ≤ i ≤ M − 1 , Un

0 = Un
M = 0, 0 ≤ n ≤ N.

It can be shown matrix form as following

DUi+1 + EUi + FUi−1 = φi (9)

where φi =
[
φ0
i , φ

1
i , φ

2
i , ..., φ

N
i

]T
, φ0

i = r(xi), φ
n
i = f

(
tn+ 1

2
, xi

)
, 1 ≤ n ≤ N, 1 ≤

i ≤ M and Ui =
[
U0
i U

1
i , U

2
i , ..., U

N
i

]T
.

Dimension of D,E and F matrices is (N + 1) × (N + 1) and these matrices can
be shown as following

D =
(
− 1

2h2

)


0
1 1

1 1
. . .

. . .

1 1

 , F =
(
− 1

2h2

)


0
1 1

1 1
. . .

. . .

1 1

 ,
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E =



1
w0,1 +

1
h2 w.,0 +

1
h2

w1,2 w.,1 +
1
h2 w.,0 +

1
h2

w2,3 w.,2 w.,1 +
1
h2 w.,0 +

1
h2

...
. . .

. . .
. . .

wN−1,N+ w.,N−1 · · · w.,2 w0,1 +
1
h2 w.,0 +

1
h2


.

Using Gauss-eliminate method, Eq. (9) transforms as following

Ui = αi+1Ui+1 + βi+1 , i = M − 1, ..., 2, 1, 0. (10)

In an attempt to determine αi+1 and βi+1 matrices, we can choose α1 = O(N+1)×(N+1)

and β1 = O(N+1)×(N+1) for U0 = α1U1+β1. Substituting Ui = αi+1Ui+1+βi+1 and
Ui−1 = αiUi + βi into Eq.(8), we obtain as following

(D + Eαi+1 + Fαiαi+1)Ui+1 + (Eβi+1 + Fαiβi+1 + Fβi) = φi (11)

D +Eαi+1 + Fαiαi+1 = 0, Eβi+1 + Fαiβi+1 + Fβi = φi, 1 ≤ i ≤ M − 1. (12)

Finally, from this system we find

αi+1 = −(E + Fαi)
−1D, βi+1 = (E + Fαi)

−1(φ− βi), 1 ≤ i ≤ M − 1. (13)

4. Numerical Analysis

4.1. Example

We consider time-fractional diffusion equation [10]

∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
+ u(x, t) = f(x, t), 0 ≤ x ≤ 2, t ≥ 0, 0 < α < 1 (14)

where initial condition is u(x, 0) = 0, 0 ≤ x ≤ 2, boundary conditions are u(0, t) =
u(2, t) = 0, t ≥ 0 and f(x, t) = 2

Γ(3−α)x(2 − x)t2−α + t2x(2 − x) + 2t2. The exact

solution of Eq.(14) is u(x, t) = t2x(2 − x) [10]. We draw graphics of numerical
solution which be calculated by means of programming language Mapple and give
error analysis for different values of α in Figure 1, Figure 2, Figure 3 and Table 1.
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Figure 1: Three dimensional graphic of Eq. (14) for M = 48, N = 16, and α = 0.2.

Figure 2: Three dimensional graphic of Eq. (14) for M = 48, N = 32, and α = 0.2.
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Figure 3: Three dimensional graphic of Eq. (14) for M = 48, N = 64, and α = 0.2.

α = 0.2 α = 0.5 α = 0.9

M N Error Error Error
48 16 0.006171225937 0.004293378614 0.004318848857
48 32 0.003887392591 0.002222009029 0.002231505317
48 48 0.003715712439 0.001499041766 0.001503670513

Table 1: The error analysis of Eq. (14) for some values of α,M and N
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5. Conclusions

In this paper,we implement Crank-Nicholson method to time-fractional diffusion
equation. In course of this application, we find approximate solution and error
analysis of this equation for some values of α, x, t, M and N.

According to these datas, it has been seen that Crank-Nicholson method has
been influential for the approximate solutions of time-fractional diffusion equation
and this method is highly influential and reliable in terms of finding approximate
solutions and comparing with numerical and exact solutions. Thus, we can deduce
that Crank-Nicholson method has an important role to obtain approximate solu-
tions of fractional differential equations. We think that this method can also be
implemented to other fractional differential equations.
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