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Abstract. In this paper we introduce and study two new subclasses T S∗m (α, λ)
and T Cm (α, λ) of analytic functions which are defined by means of a new differan-
tial operator. Some results connected to coefficient estimates, distortion theorems
and radii of starlikeness and convexity related these subclasses are obtained. Also,
extreme points for these subclasses are determined.
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1. Introduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑
n=2

anz
n (1)

which are the analytic in the open unit disk U = {z ∈ C : |z| < 1} . Suppose that
S denote the subclass of A consisting of functions that are the univalent in U . A
function f ∈ A is said to be starlike of order α (0 ≤ α < 1) if and only if

<
(
zf ′(z)

f(z)

)
> α, (z ∈ U) .

Here, the class of all such functions is denote by S∗ (α). On the other hand, a
function f ∈ A is said to be convex of order α (0 ≤ α < 1) if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
> α, (z ∈ U) .

We denote by C(α) the class of all such functions. Note that S∗ (0) = S∗ and
C∗(0) = C are the usual classes of starlike and convex functions in U , respectivelly.
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Further T denote subclass of A consisting of functions f of the form

f(z) = z −
∞∑
n=2

|an| zn. (2)

A function f ∈ T is called a function with negative coefficient and the class
T introduced and studied by Silverman [8]. Recently, some subclasses of T have
investigated by many mathematicians (see [1]-[5]).

For a functions f in A, we define the a new differential operator Dm
λ as follows:

Definition 1. Let f ∈ A. For the parametres λ ≥ 0 and m ∈ N0= N∪{0} define
the differential operator Dm

λ on A as follows;

D0
λf(z) = f(z)

D1
λf(z) = Dλf(z) = λz3f ′′′(z) + (2λ+ 1)z2f ′′(z) + zf ′(z)

Dm
λ f(z) = Dλ(Dm−1

λ f(z))

for z ∈ U .

For a function f in A, from definition of the differential operator Dm
λ , we can

easily see that

Dm
λ f(z) = z +

∞∑
n=2

n2m (λ (n− 1) + 1)m anz
n.

Also, Dm
λ f(z) ∈ A. For f ∈ A given by (1) and g(z) given by

g(z) = z +

∞∑
n=2

bnz
n

their convolution (or Hadamard Product), denoted by (f ∗ g) , is defined as

(f ∗ g) (z) = z +

∞∑
n=2

anbnz
n = (g ∗ f) (z), (z ∈ U) .

Special cases of this operator include the Sălăgean derivative operator Sm [7]
as follows:

Dm
0 f(z) = Smf(z) ∗ Smf(z) = S2mf(z)

and
Dm

1 f(z) = Smf(z) ∗ Smf(z) ∗ Smf(z) = S3mf(z).
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We now define subclasses related with the differential operator Dm
λ ,

S∗m (α, λ) =

{
f ∈ A : <

(
z (Dm

λ f(z))′

Dm
λ f(z)

)
> α, λ ≥ 0, (0 ≤ α < 1)

}
and

Cm (α, λ) =

{
f ∈ A : <

(
1 +

z (Dm
λ f(z))′′(

Dm
λ f(z)

)′
)
> α, λ ≥ 0, (0 ≤ α < 1)

}
.

Further, we define the classes T S∗m (α, λ) and T Cm (α, λ) , respectivelly, by

T S∗m (α, λ) = S∗m (α, λ) ∩ T

and
T Cm (α, λ) = Cm (α, λ) ∩ T

for λ ≥ 0, 0 ≤ α < 1 and m ∈ N0. Silverman [8] proved some results for the
subclasses S∗ (α) , C (α) , T S∗0 (α, λ) and T C∗0 (α, λ) .

2. Main Results

2.1. Coefficients inequalities

In this section, we provide a necessary and sufficient condition for a function f
analytic in U to be in S∗m (α, λ) , Cm (α, λ) , T S∗m (α, λ) and T Cm (α, λ) .

Theorem 1. For λ ≥ 0 and 0 ≤ α < 1, let f ∈ A be defined by (1). If

∞∑
n=2

n2m (n− α) (λ (n− 1) + 1)m |an| ≤ 1− α, (3)

then f ∈ S∗m (α, λ) where m ∈ N0.

Proof. It sufficies to show that values for z (Dm
λ f(z))′�Dm

λ f (z) lie in a circle cen-
tered at w = 1 whose radius is 1− α. So, we have that∣∣∣∣z (Dm

λ f(z))′

Dm
λ f(z)

− 1

∣∣∣∣ (4)

=

∣∣∣∣∑∞n=2 n
2m (n− 1) (λ (n− 1) + 1)m anz

n

z +
∑∞

n=2 n
2m (λ (n− 1) + 1)m anzn

∣∣∣∣
≤

∑∞
n=2 n

2m (n− 1) (λ (n− 1) + 1)m |an|
1−

∑∞
n=2 n

2m (λ (n− 1) + 1)m |an|
.
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On the other hand from the inequality (3) we have

∞∑
n=2

n2m (n− α) (λ (n− 1) + 1)m |an|

=

∞∑
n=2

n2m (n− 1) (λ (n− 1) + 1)m |an|+ (1− α)

( ∞∑
n=2

n2m (λ (n− 1) + 1)m
)
|an|

≤ 1− α

and therefore ∑∞
n=2 n

2m (n− 1) (λ (n− 1) + 1)m |an|
1−

∑∞
n=2 n

2m (λ (n− 1) + 1)m |an|
≤ 1− α. (5)

Thus from (4) and (5) we obtain∣∣∣∣z (Dm
λ f(z))′

Dm
λ f(z)

− 1

∣∣∣∣ ≤ 1− α,

and theorem is proved. Note that the denominator in last inequality of (4) is positive
provided that (5) holds.

Corollary 2. For λ ≥ 0 and 0 ≤ α < 1, let f ∈ A be defined by (1). If

∞∑
n=2

n2m+1 (n− α) (λ (n− 1) + 1)m |an| ≤ 1− α, (6)

then f ∈ Cm (α, λ) where m ∈ N0.

Proof. It is well known that Dm
λ f(z) ∈ Cm (α, λ) if and only if z (Dm

λ f(z))′ ∈
S∗m (α, λ) . Since

z (Dm
λ f(z))′ = z +

∞∑
n=2

n2m+1 (λ (n− 1) + 1)m anz
n,

we may replace an with nan in the Theorem 1.

For functions in T S∗m (α, λ) , the converse of Theorem 1 is true.

Theorem 3. For λ ≥ 0 and 0 ≤ α < 1, let f ∈ T be defined by (2). Then
f ∈ T S∗m (α, λ) if and only if the inequality (3) is satisfied. The result is sharp with
the extremal function f given by

f(z) = z − 1− α
4m (2− α) (λ+ 1)m

z2.
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Proof. We only prove the right-hand side, since the other side can be justified using
similar arguments in proof of Theorem 1. Since f ∈ T S∗m (α, λ), we have that

<
{
z (Dm

λ f(z))′

Dm
λ f(z)

}
= <

{
z −

∑∞
n=2 n

2m+1 (λ (n− 1) + 1)m |an| zn

z −
∑∞

n=2 n
2m (λ (n− 1) + 1)m |an| zn

}
> α (7)

for z ∈ U . Choose values of z on the real axis so that z (Dm
λ f(z))′�Dm

λ f (z) is real.
Upon clearing the denominator in (7) and letting z → 1− through real values, we
obtain

1−
∑∞

n=2 n
2m+1 (λ (n− 1) + 1)m |an|

1−
∑∞

n=2 n
2m (λ (n− 1) + 1)m |an|

≥ α.

Thus we obtain

∞∑
n=2

n2m(n− α) (λ (n− 1) + 1)m |an| ≤ 1− α,

and the proof is complete.

Corollary 4. If f ∈ T S∗m (α, λ) then,

|an| ≤
1− α

n2m (n− α) (λ (n− 1) + 1)m
,

with equality only for functions of the form

fn(z) = z − 1− α
n2m (n− α) (λ (n− 1) + 1)m

zn.

Corollary 5. A function f (z) = z −
∑∞

n=2 |an| zn is in T C∗m (α, λ) if and only if
the inequality (6) is satisfied. The result is sharp with the extremal function f given
by

f(z) = z − 1− α
22m+1 (2− α) (λ+ 1)m

z2.

Theorem 6. Let 0 ≤ λ1 ≤ λ2 and 0 ≤ α < 1, m ∈ N0. Then T S∗m (α, λ2) ⊆
T S∗m (α, λ1) and T C∗m (α, λ2) ⊆ T C∗m (α, λ1) .

Proof. Since by assumption we have

∞∑
n=2

n2m (n− α) (λ1 (n− 1) + 1)m |an| ≤
∞∑
n=2

n2m (n− α) (λ2 (n− 1) + 1)m |an| ≤ 1−α.

Thus f ∈ T S∗m (α, λ2) implies that f ∈ T S∗m (α, λ1) . Similarly T C∗m (α, λ2) ⊆
T C∗m (α, λ1) .
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2.2. Covering theorems

In this section, growth and distortion theorems will be considered and covering
property for function in the class will also be given.

Theorem 7. If f ∈ T S∗m (α, λ) , then,

r − 1− α
(2− α) (4(λ+ 1))m

r2 ≤ |f(z)| ≤ r +
1− α

(2− α) (4(λ+ 1))m
r2 (|z| = r) ,

where m ∈ N0, λ ≥ 0 and 0 ≤ α < 1.The result is sharp with the extremal function
f given by

f(z) = z − 1− α
(2− α) (4(λ+ 1))m

z2.

Proof. Since f ∈ T S∗m (α, λ) by Theorem 3 we have that

(2− α) 4m (λ+ 1)m
∞∑
n=2

|an| ≤
∞∑
n=2

n2m(n− α) (λ (n− 1) + 1)m |an| ≤ 1− α

or
∞∑
n=2

|an| ≤
1− α

(2− α) (4(λ+ 1))m
. (8)

Thus from (8) we obtain

|f(z)| =

∣∣∣∣∣z −
∞∑
n=2

|an| zn
∣∣∣∣∣ ≤ |z|+

∞∑
n=2

|an| |z|n ≤ r + r2
∞∑
n=2

|an|

≤ r + r2
1− α

(2− α) (4(λ+ 1))m

and similarly,

|f(z)| =

∣∣∣∣∣z −
∞∑
n=2

|an| zn
∣∣∣∣∣ ≥ |z| −

∞∑
n=2

|an| |z|n ≥ r − r2
∞∑
n=2

|an|

≥ r − r2 1− α
(2− α) (4(λ+ 1))m

.

Corollary 8. If f ∈ T Cm (α, λ) ,then

r − 1− α
2 (2− α) (4(λ+ 1))m

r2 ≤ |f(z)| ≤ r +
1− α

2 (2− α) (4(λ+ 1))m
r2 (|z| = r) ,
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where m ∈ N0, λ ≥ 0 and 0 ≤ α < 1.The result is sharp with the extremal function
f given by

f(z) = z − 1− α
2 (2− α) (4(λ+ 1))m

z2.

Theorem 9. The disk |z| < 1 is mapped onto a domain that cantains the disk
|w| < 1− 1−α

(2−α)(4(λ+1))m
by any f ∈ T S∗m (α, λ) and onto a domain that contains the

disk |w| < 1− 1−α
2(2−α)(4(λ+1))m

by any f ∈ T Cm (α, λ) .

Proof. The results follow upon letting r → 1 in Theorem 7 and its corollary.

Theorem 10. If f ∈ T S∗m (α, λ) , then

1− 2(1− α)

(2− α) (4(λ+ 1))m
r ≤

∣∣f ′(z)∣∣ ≤ 1 +
2(1− α)

(2− α) (4(λ+ 1))m
r (|z| = r) ,

where m ∈ N0, λ ≥ 0 and 0 ≤ α < 1.

Proof. Since f ∈ T S∗m (α, λ) by Theorem 3 we have that

(2− α) 22m−1 (λ+ 1)m
∞∑
n=2

n |an| ≤
∞∑
n=2

n2m(n− α) (λ (n− 1) + 1)m |an| ≤ 1− α

or
∞∑
n=2

n |an| ≤
2(1− α)

(2− α) (4(λ+ 1))m
. (9)

In view of the inequalities (8) we obtain

∣∣f ′(z)∣∣ ≤ 1 +

∞∑
n=2

n |an| |z|n−1 (10)

≤ 1 + r

∞∑
n=2

n |an|

≤ 1 +
2(1− α)

(2− α) (4(λ+ 1))m
r.

which is right-hand inequality in Theorem 10. On the other hand, similarly∣∣f ′(z)∣∣ ≥ 1− 2(1− α)

(2− α) (4(λ+ 1))m
r

and thus proof is completed.
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Corollary 11. If f ∈ T Cm (α, λ) , then

1− 1− α
(2− α) (4(λ+ 1))m

r ≤
∣∣f ′(z)∣∣ ≤ 1 +

1− α
(2− α) (4(λ+ 1))m

r (|z| = r) ,

where m ∈ N0, λ ≥ 0 and 0 ≤ α < 1.

2.3. Radii of Starlikeness and Convexity

Next, we obtain the radii of starlikeness and convexity of order δ (0 ≤ δ < 1) of the
class T S∗m (α, λ).

Theorem 12. If f ∈ T S∗m (α, λ) , then f is starlike of order δ (0 ≤ δ < 1) in the
disk

|z| < r1 = r1(α, λ, δ,m) = inf
n

(
(n− α) (1− δ)n2m (λ (n− 1) + 1)m

(n− δ) (1− α)

) 1
n−1

, (n = 2, 3, ...).

Proof. For 0 ≤ δ < 1 we need to show that∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 1− δ,

that is, ∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ≤ ∑∞
n=2 (n− 1) |an| |z|n−1

1−
∑∞

n=2 |an| |z|
n−1

< 1− δ

or
∞∑
n=2

(
n− δ
1− δ

)
|an| |z|n−1 < 1.

By using Theorem 3, the above inequality holds if

|z|n−1 < (1− δ) (n− α)n2m (λ (n− 1) + 1)m

(1− α) (n− δ)
.

This completes the proof of theorem.

We now determine the radius of convexity for functions in T S∗m (α, λ) .
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Theorem 13. If f ∈ T S∗m (α, λ) , then f is convex of order δ (0 ≤ δ < 1) in the
disk

|z| < r2 = r2(α, λ, δ,m) = inf
n

(
(n− α) (1− δ)n2m−1 (λ (n− 1) + 1)m

(n− δ) (1− α)

) 1
n−1

, (n = 2, 3, ...).

Proof. It suffices to show that
∣∣∣ zf ′′(z)f ′(z)

∣∣∣ ≤ 1− δ for |z| ≤ r2. Then proof is similar to

the proof of Theorem 12 and therefore we omit the details.

2.4. Extreme Points

The extreme points of the classes T S∗m (α, λ) and T Cm (α, λ) are given by the fol-
lowing theorem.

Theorem 14. Let f1(z) = z and

fn(z) = z − (1− α) zn

n2m(n− α) (λ (n− 1) + 1)m
, (n = 2, 3, ...) .

Then f ∈ T S∗m (α, λ) if and only if it can be expressed in the form f(z) =
∑∞

n=1 γnfn(z) where
γn > 0 and

∑∞
n=1 γn = 1.

Proof. Suppose

f(z) =
∞∑
n=1

γnfn(z) = z −
∞∑
n=2

γn
1− α

n2m(n− α) (λ (n− 1) + 1)m
zn.

Then we have

∞∑
n=2

n2m(n− α) (λ (n− 1) + 1)m

1− α

(
γn

1− α
n2m(n− α) (λ (n− 1) + 1)m

)

=
∞∑
n=2

γn = 1− γ1 ≤ 1.

Thus, f ∈ T S∗m (α, λ) .
Converselly, suppose f ∈ T S∗m (α, λ) .Since

|an| ≤
1− α

n2m(n− α) (λ (n− 1) + 1)m
, (n = 2, 3, ...) ,

we may set

γn =
n2m(n− α) (λ (n− 1) + 1)m

1− α
|an| , (n = 2, 3, ...) ,
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and γ1 = 1−
∑∞

n=2 γn.
Then

f(z) =
∞∑
n=1

γnfn(z).

This complete the proof.

Corollary 15. The extreme points of T S∗m (α, λ) are the functions fn(z) (n = 2, 3, ...)
in Theorem 14

Corollary 16. The extreme points of T Cm (α, λ) are given by f1(z) = z and

fn(z) = z − 1− α
n2m+1(n− α) (λ (n− 1) + 1)m

zn, (n = 2, 3, ...) .
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