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SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED
BY MODIFIED CATA’S OPERATOR

A.O. MosTaFA, M.K. Aour, A. SHAMANDY AND E.A. ADWAN

ABSTRACT. In this paper, we introduce a new class of harmonic univalent func-
tions defined by modified Cata’s operator. Coefficient estimates, extreme points,
distortion bounds and convex combination for functions belonging to this class are
obtained and also for a class preserving integral operator.
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1. INTRODUCTION

A continuous complex-valued function f = u + iv is defined in a simply connected
complex domain D is said to be harmonic in D if both u and v are real harmonic
in D. In any simply connected domain we can write

f=h+7, (1.1)

where h and g are analytic in D. We call h the analytic part and g the co-analytic
part of f. A mnecessary and sufficient condition for f to be locally univalent and
sense-preserving in D is that |h/(z)] > |¢/(z)| in D (see [5]).

Denote by Sp the class of functions f of the form (1.1) that are harmonic
univalent and sense-preserving in the unit disk U = {z : |z] < 1} for which
f(0) = f.(0) =1 = 0. Then for f = h+ g € Sy we may express the analytic
functions h and g as

h(z) =2+ anz", g(z) = b2, |bi| <1. (1.2)
n=2 n=1

In [5] Clunie and Shell-Small investigated the class Sy as well as its geometric
subclasses and obtained some coefficient bounds. Since then, there have been several
related papers on Sy and its subclasses.
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Let Sy denote the subclasses of Sy consisting of functions f = h+g such that
h and ¢ given by

z)=z+ Zanz", g(z) = (-)™ anz", |by] < 1. (1.3)
n=2 n=1

For m € Ny = NU{0},N={1,2,..} ,x > 0 and [ > 0, the extended multiplier
transformation I™ (u, 1) is defined by the following infinite series (see [2]):

Im(,u,l)f(z)zz+z [I—H—il_i(ln_l)] anz". (1.4)

n=2
It follows from (1.4) that (see [2])

pz(I™ (D) f(2)) = L+ DI (1 ) f(2) = (L= p+ DI (1, ) f(2) (0> 0)

and

™ (p, D™ (D) f(2)) = T2 (0, 1) f (2) = 172 (s D™ (0, 1) f(2)),

for all integers m1 and ms.
We note that:

1901, )£ (2) = £(2) and I'(1,0)f(2) = 2f'(2).

Also, we can write

I (D) f(2) = (@ + )(2),

where

m 1+l +pn—-11T" ,
S
n=2

Now we can define the modified Cata’s operator as follows:

I(m, p 1) f(2) = I™ (. 1) B(z) + (=)™ I™ (1, 1) 9(2), (1.5)

where
I (1) =z+ Z [Hlﬁiln ) ] anz"
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and -
™ () g(2) = (~1)™ Y [HHAGED] T gm,
n=1
For 1 < <2 and for all z € U, let SI"(u,l;7y) denote the family of harmonic

functions f(z) = h + g, where h and g given by (1.2) and satisfying the analytic
criterion

e {Im (1, 1) h(2) + (—1)ml’”(w>g(z)} <. (1.6)

z

Let ST™(u,l;7) be the subclass of SI™(u,l;v) consisting of functions f = h 4+ g
such that h and g given by (1.3).
We note that for suitable choices of m, p and [, we obtain the following subclasses:

(1) Putting 4 = 1 and [l = 0, in (1.6), the class SI™(1,0;y) reduces to the class ST™ ()

= {fe SH:Re{Dmh(z)—k(—l)mDmg(z)}<% 1<~vy<2,meN

z

zeU},

where D™ is the modified Salagean operator (see [7]), the differential opertor D™
was introduced by Salagean (see [8]);

(2) Putting p = 1 and [ = 1, in (1.6), the class SI™(1,1;v) reduces to the
class reduces to the class SI™(7)

I™h 1" m
= {fESH:Re{ (2)+(=1) g(z)}<’y,1<7§2,m€Z:{O,il,

z

+2,..},2 €U},

where I is the modified Uralegaddi-Somanatha operator (see [9]), defined as fol-
lows:

IMf(z) = I"h(z) + (=1)" I"™g(2);
(3) Putting p = 1, in(1.6), the class SI™(1,l;) reduces to the class SI™(l;7)

I™h —H"mrm
:{feSH:Re{’ (2) +(=1) lg(z)}<7,1<7§2,m€R,l>—1,zeU},

z
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where I is the modified Cho-Kim operator [3] (also see [4] ), defined as follows:

I f(z) = I/"h(z) + (=1)" I]"g(2);

(4) Putting [ = 0, in(1.6), the class SI™(u,0;~) reduces to the class ST™(u;7)

D™h(z) + (—=1)" Dmg(z
:{feSH:Re{ p =)+ (1) “g()}<%1<7§2,,u20,m€N0,z€U},

z

where D} is the modified Al-Oboudi operator (see [1]), defined as follows:

Dji f(z) = Dith(z) + (=1)" Djpg(2).

2. COEFFICIENT ESTIMATES

Unless otherwise mentioned, we shall assume in the reminder of this paper that, the
parameters 1 <y <2, m € Ng,u>0and [ > 0.

Theorem 1. Let f = h+ 7 be so that h(z) and g (z) given by (1.2). Furthermore,
let

5 [ S [ e e

n=2 n=1
Then f (z) is sense-preserving, harmonic univalent in U and f (z) € SI™(u, ;7).

Proof. If z1 # zo, then

21 bn (27 — 23)

‘f(zl)_f(ZZ) S 1_‘9(21)—9(22) -
h(z1) — h(z - h(z1) —h(z n o on s n o on
(z1) (22) (1) (22) (27 — 25) + Zlan(zl_zz)
> o Pesge=]"
> 1= % = 1= 1+z+1<711—1> " 20,
1722n|an| [ 1’;!1 ] |an|

which proves univalence. Note that f (z) is sense-preserving in U. This is because
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o0

‘h/ (z)‘ > 1- Zn |an| ‘znfl‘
n=2
o 0o [1+l+,u(n71)}m
> 1= nla,| > 1—Zl+—llyan|
n=2 n=2 T
0o [1+l+,u(n71):|m o
1+
Syl VNES S8
n=1 v n=1
oo
> Zn\bn| |z"_1‘ > ‘g (z)’
n=1

Now we will show that f (z) € SI™(u,l;y). We only need to show that if (2.1) holds
then the condition (1.6) is satisfied.

Using the fact that Re {w} < v if and only if |w — 1] < |w — (27 — 1) |, it suffices to
show that

1™ (p, 1) h(z) + I (p, 1) 9(2)

-1
- S < 1.
z
We have
I (1) () + T (D g(5) |
2
I (1, ) h(z) + I (1) g(=
(1,1) ()Z ( )g<)—(2'y—1)
S [1H4pn-)" e = m [ 1+l4pn—1)]" T7—=T
nZ::2|: 1’1(1 )} anZ 14‘;::1(—1) [ 1#+(z )] bn2" 1
2(y — 1)+n§2 [%Jr(l”—l)} (21 +n§1(_1)m [Wﬁﬂiﬁb—l)] by, 2"
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X1+ —1)]™ . S 1+l -n]" -
S [FEEFR] a1+ X (1 [FEEER ] ol o
n=

n—=

2 [1++p(n—1)1™ _ 2 [14+l4pun—1)1™ .
2y —1) = > [FHE] o, ||on-1] — 3[BT o0t

n=2 n=1

§ [1+l+1;jr(lnfl)} ] + Z {Hlﬁi? 1)} bl

n=2

2ww—gﬁ%$ﬂmmqﬂﬂ%ﬂ}w

n—

<

which is bounded above by 1 by using (2.1). This completes the proof of Theorem
1.

Theorem 2. A function f(z) of the form (1.1) is in the class SI™(p, ;)
if and only if

(1414 pn—1)1" (1414 pn—1)1"
n bp| <~v—1.
> [ e 3 [ <

Proof. Since SI™(u,l;~y) C SI™(w,1;7), we only need to prove the "only if” part of
this theorem. To this end , for functions f(z) of the form (1.3), we notice that the
condition

<7
z

&{mwwma+ewwwmmm%

is equivalent to

1+14pu(n—1 n— m [ 14+l4+p(n—1)1™ e
e {14 3 [+ 3 [2250]
141 n—1 n 1+l+p(n—1 n—
£1+Z[“m WmHzW+Z[“L ™ b T2 < .

Letting z — 1~ along the real axis, we obtain the inequality (2.1). This completes
the proof of Theorem 2.

Remark 1. Putting p = 1,1 = 0 and m = 1 in Theorem 2, we obtain the result
obtained by Dizit and Porwal [6, Theorem 2.1].
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3. DISTORTION THEOREM

Theorem 3. Let the function f(z) defined by (1.1) belong to the class ST™(u,l; 7).
Then for |z| = r < 1,we have

== | -1l <1
< (1+‘b1‘)7’+ [%} ('y—l—\bl\)rz (3.1)

for |b1| <~ —1. The results are sharp with equality for the functions f(z) defined by

R re= =l GRS 3.2)
and L
F() =2~ bz LJW] (=1 o)) 22 (33)

Proof. We only prove the right-hand inequality. The proof for the left-hand inequal-
ity is similar and will be omitted. Let f(z) € SI™(u,l;~y). Taking the absolute value
of f we have

L+ b1l + D (lan] + b)) 7™ < (L4 [oi])r + Y (|an| + [ba]) 72

If2) <
n=2 n=2
= sl w(;;gg;;zmz;mﬂ ol + e ) 7
< (Ut TS 3 [ ol + G ]
< (1 |y + GO (1 - 7"’_”1) r?
= (bt [ a1

Similarly we can prove |f(z)] > (1 —|b1|)7r — [plrﬁu}m (y — 1 —|b1]) 2. The func-
tions f(z) given by (3.2) and (3.3), respectively, for |b;| < v — 1 show that the

bounds given in Theorem 3 are sharp.
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4. EXTREME POINTS

Theorem 4. Let f (z) be given by (1.1). Then f(z) € SI™(u,l;v) if and only if

[e.o]

f(z)= nzl(unhn(Z) +10ga(2)) (4.1)
where hy(2) = =,
ho(2) = 2+ [1+l+1:(ln_1)]m(fy—1)z“ (n>2%meNy)  (4.2)
and
n@ =2+ " || 00T zmen. @y

[o.¢]
tn > 0,1 >0, > (un +nn) = 1. In particular, the extreme points of the class
n=1

SI™(p,l;7y) are {hy} and {gy}, respectively.
Proof. Suppose that

F) = 3 (aha(2) + 10ga(2))

Then

- [14+l4+pu(n—1)™ (v=D)(14+D)™ > [1+l14+pu(n—1)]™ (v=1)(1+D)™
> D™ ([ﬁzw(nfmm “n) + i ([sz(nflnmnn)
n=2 n=1
= ZunJann:l—m <1
n=2 n=1

and so f(z) € SI™(u,1;7).
Conversely, if f (z) € SI™(u,1;7), then

m

141
I4+14+p(n—-1)

lan| < (v = 1)
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and L "
+
bl < (v —1 .
bl < (v )[1+l+u(n—1)]
Setting
1 1+l+pun—-1)7"
n — n =23, ...
= 2y | anl (n=2,3,..)
and . l ( )
1+l+pun-—1)1"
n — n =1,2,...).
g | e =12

[ee]
Since 0 < pp, <1 (n=23,...)and 0 <7, <1 (n=1,2,..), p1 =1 — > pup —
n=2

o0
> mn > 0, then, we can see that f(z) can be expressed in the form (4.1). This
n=1

completes the proof of the Theorem 4.

5. CONVOLUTION AND CONVEX COMBINATION

For our next theorem, we need to define the convolution of two harmonic functions.
For harmonic functions of the form:

FR)=24) lan2" + " |ba| 2" (5.1)

n=2 n=1

and - -
F(z)=z+) |An2" +) |Bu|7", (5.2)

n=2 n=1

the convolution of f and F is given by
(fxF)(2)=f(2) % F(2) =2+ > landn|z" + > |bnBn| 2™ (5.3)
n=2 n=1

Using this definition, the next theorem shows that the class SI™(u, ;) is closed
under convolution.

Theorem 5. For 1 <~y <\ <2, let f € SI™(u,l;7v) where f(2) is given by (5.1)
and F € SI™(u,l; \) where F (z) is given by (5.2). Then SI™(u, ;) C SI™(u,l; A).
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Proof. We wish to show that the coefficients of f x F' satisfy the required condition
given in Theorem 1. For F' € SI™(u,l; \) we note that |A,| <1 and |B,| < 1. Now,
for the convolution function f x F' we obtain

| I+l+pn—-1)1" =1 IL+l+pmn-1D1" _
;(7—1)[ 141 [anAn] 2 +n§::1(7—1) 1+1 bnBn] 2
=1 L+l+pn—-1)1" =1 l+l+pun-D1",

< n " bn n

= ;::2(7—1)[ 111 [an} 2 +n§(7—1) 141 ba] 2

< 1

b

since 1 < v < A< 2and f € SI"™(u,l;v). Therefore f+ F € SI™(u,l;y) C
ST (p, 1y N).

Now we show that the class SI™(u,l;7) is closed under convex combinations of
its members.

Theorem 6. The class SI™(u,l;) is closed under convex combination.

Proof. For i=1,2,3,..., let f; € SI"™(u,l;v), where f; is given by

oo oo
fi = z—l—Z\am|z" —I—Z|bm|z7”.
n=2 n=1

Then by using Theorem 1, we have

oo m oo m
1 [1+l+u(n—1)] 1 I4+1l4+p(n—-1) _
Z |an, | 2" +Z |br,| 2" < 1.
= 0-1 1+1 = (-1 1+1
(5.4)

(o]
For > t; =1,0 <t; <1, the convex combination of f; may be written as

n=1

dtifi(z) =2+ <Z t; |ani> D (Zti \bm.|> 2. (5.5)
i=1 n=2 \i=1 n=1 \i=1
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Then by (5.4), we have

o0

>t [ttuteen)” (Zm%)

S o [t (zmz)m)

_OO. 1 Leu(n-1)]™ 1 Lrp(n-1)]™
*th <Z (7_1) {1+—~_1/fs—l 1] |anz‘+nzl(,y_1) {1++{fi-l 1:| ‘bnz|>

o0
This is the condition required by (2.1) and so ) t;f; (2) € Sm, ,([c1];7).
i=1
6. A FAMILY OF INTEGRAL OPERATORS

Theorem 7. Let the function f(z) defined by (1.1) be in the class SI™(u,l;~) and
let ¢ be a real number such that ¢ > —1. Then the function F (z) defined by

c+1 / c—|—1
F(z)=—— [ t“'h(t)dt + te=lg(t)dt  (c> —1) (6.1)
= a2 |

also belongs to the class ST™(u, ;7).

Proof. Let the function f (z) be defined by (1.1). Then from the representation (6.1)
of F'(z), it follows that

o0 (o]
z) = z+Zdnzn+ZCn27,
n=2 n=1

1 1
dn:(c+ >|an| and Cn:<c+ >|bn|
c+n c+n

where
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Therefore, we have

[1+l4+p(n—1)1™ Z 1-+l+u(n—1) C
| 1+l ] I A n

[14l+pn—1)]™ 1+l+ 1 c+1
i 1‘-1(1” )_ ( > |an| + + fjr(zn )} (c+n) 129
oo

[14+14p(n—1 1414+ 1
< X[ lanl+2[ ffél” >} bul <71,

>

since f (z) € SI™(u,l;). Hence, by Theorem 1, F'(z) € SI™(u, ;7).
This completes the proof of Theorem 7.

Remark 2. Specializing the parameters I, p and m, in the above results, we obtain
the corresponding results for the corresponding classes defined in the introduction.
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