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1. Introduction

Let A denote the class of functions f(z) of the form:

f(z) = z +

∞∑
k=2

akz
k, (1)

which are analytic and univalent in the open unit disk U = {z ∈ C : |z| < 1}. If f(z)
and g(z) are analytic in U, we say that f(z) is subordinate to g(z), written f ≺ g
or f(z) ≺ g(z) (z ∈ U), if there exists a Schwarz function w(z) in U with w(0) = 0
and |w(z)| < 1 (z ∈ U), such that f(z) = g(w(z)), (z ∈ U). In particular, if g(z) is
univalent in U, then f(z) ≺ g(z) if and only if f(0) = g(0) and f(U) ⊂ g(U) (see
[16] and [17]).

For the functions f ∈ A given by (1) and g ∈ A given by

g (z) = z +

∞∑
k=2

bkz
k, (2)

the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = z +

∞∑
k=2

akbkz
k = (g ∗ f)(z). (3)
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Let CV and ST be the subclasses of A which are starlike and convex functions,
respectively. A function f(z) ∈ A is said to be in the class of uniformly starlike
functions of order γ and type β, denoted by SP (β, γ) if

<

{
zf

′
(z)

f(z)
− γ

}
> β

∣∣∣∣∣zf
′
(z)

f(z)
− 1

∣∣∣∣∣ , (4)

where β ≥ 0,−1 ≤ γ < 1, β + γ ≥ 0. Similarly, if f(z) ∈ A satisfies

<

{
1 +

zf
′′
(z)

f ′(z)
− γ

}
> β

∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ , (5)

where β ≥ 0,−1 ≤ γ < 1, β+ γ ≥ 0, then f(z) is said to be in the class of uniformly
convex functions of order γ and type β, and is denoted by UCV (β, γ). The classes
SP (β, γ) and UCV (β, γ) were studied by Bharti et al. [8].

For functions f, g ∈ A, we define the linear operator Dn
λ : A → A (λ ≥ 0, n ∈

N0 = N ∪ {0},N = {1, 2, ...}) by:

D0
λ(f ∗ g)(z) = (f ∗ g)(z) ,

D1
λ(f ∗ g)(z) = Dλ(f ∗ g)(z) = (1− λ )( f ∗ g)(z) + λz ( ( f ∗ g)(z))′,

and (in general)

Dn
λ(f ∗ g)(z) = Dλ(Dn−1

λ (f ∗ g)(z)) (λ ≥ 0;n ∈ N) . (6)

If f and g are given by (1) and (2), respectively, then from (6), we see that

Dn
λ(f ∗ g)(z) = z +

∞∑
k=2

[1 + λ(k − 1)]nakbkz
k (λ ≥ 0;n ∈ N0) . (7)

From (7), we can easily deduce that

λz (Dn
λ(f ∗ g)(z))′ = Dn+1

λ (f ∗ g)(z)− (1− λ)Dn
λ(f ∗ g)(z) (λ > 0). (8)

The operator Dn
λ(f ∗g)(z) was introduced by Aouf and Seoudy [5]. We observe that

the linear operator Dn
λ(f ∗ g)(z) reduces to several interesting many other linear

operators considered earlier for different choices of n, λ and the function g (z) :

(i) For bk = 1 (or g(z) =
z

1− z
), we have Dn

λ(f ∗ g)(z) = Dn
λf(z), where Dn

λ is

the generalized Sălăgean operator (or Al-Oboudi operator [1]) which yield Sălăgean
operator Dn for λ = 1 introduced and studied by Sălăgean [22];
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(ii) For n = 0 and

bk = Γk =
(a1)k−1...(al)k−1

(b1)k−1...(bm)k−1(1)k−1
(9)

(
ai ∈ C; i = 1, .., l; bj ∈ C\Z−0 = {0,−1, ..} ; j = 1, ..,m; l ≤ m+ 1; l,m ∈ N0

)
,

where

(x)k =
Γ(x+ k)

Γ (x)
=

{
1 (k = 0;x ∈ C∗ = C\{0})
x(x+ 1)...(x+ k − 1) (k ∈ N;x ∈ C),

we have D0
λ(f∗g)(z) = (f∗g)(z) = Hl,m (a1; b1) f(z), where the operator Hl,m (a1; b1)

is the Dziok-Srivastava operator introduced and studied by Dziok and Srivastava
[10] (see also [11] and [12]). The operator Hl,m (a1; b1), contains in turn many
interesting operators such as, Hohlov linear operator (see [13]), the Carlson-Shaffer
linear operator (see [9] and [21]), the Ruscheweyh derivative operator (see [20]),
the Bernardi-Libera-Livingston operator (see [7], [14] and [15]) and Owa-Srivastava
fractional derivative operator (see [18]);

(iii) For g(z) of the form (9), the operator Dn
λ(f ∗ g)(z) = Dn

λ(a1, b1)f(z), intro-
duced and studied by Selvaraj and Karthikeyan [23];

(iv) For

bk =

[
Γ (k + 1) Γ (2− α)

Γ (k + 1− α)

]n
(α 6= 2, 3, 4, ...) ,

we have Dn
λ(f ∗ g)(z) = Dn,α

λ f(z), where Dn,α
λ f(z) is a linear operator which was

introduced and studied by Al-Oboudi and Al-Amoudi ([2] and [3], see also [4]);
(v) For

bk =

[
(a)k−1
(c)k−1

]n (
a, c ∈ R+

)
,

we note thatDn
λ(f∗g)(z) = Ina,c,λf (z) , where Ina,c,λf (z) is a linear multiplier operator

which introduced by Prajapat and Riana [19];
(vi) For bk = [Γk]

n , where Γk is given by (1.9) , we obtain the linear operator
Dn
λ(f ∗ g)(z) = Lnλ,l,m (a1; b1) f(z), where Lnλ,l,m (a1; b1) is defined by Srivastava et

al. [24]. The operator Lnλ,l,m (a1; b1) contains Al-Oboudi and Al-Amoudi operator
[2, 3] and Prajapat and Riana operator [19].

Let SPnλ (f, g; γ, β) be the class of functions f, g ∈ A satisfying the following
condition:

<

{
z(Dn

λ(f ∗ g)(z))
′

Dn
λ(f ∗ g)(z)

− γ

}
> β

∣∣∣∣∣z(Dn
λ(f ∗ g)(z))

′

Dn
λ(f ∗ g)(z)

− 1

∣∣∣∣∣ (z ∈ U), (10)
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where −1 ≤ γ < 1 , β ≥ 0, β + γ ≥ 0, λ ≥ 0 and n ∈ N0.
Let UCV n

λ (f, g; γ, β) be the class of function f, g ∈ A satisfying the following
condition:

<

{
1 +

z(Dn
λ(f ∗ g)(z))

′′(
Dn
λ(f ∗ g)(z)

)′ − γ
}
> β

∣∣∣∣∣z(Dn
λ(f ∗ g)(z))

′′(
Dn
λ(f ∗ g)(z)

)′
∣∣∣∣∣ (z ∈ U), (11)

where −1 ≤ γ < 1 , β ≥ 0, β + γ ≥ 0, λ ≥ 0 and n ∈ N0.
From (10) and (11), we have

f (z) ∈ UCV n
λ (f, g; γ, β)⇔ zf

′
(z) ∈ SPnλ (f, g; γ, β). (12)

Taking bk = [Γk]
n , where Γk is given by (9), we note that SPnλ (f, g; γ, β) =

SPnλ,l,m(a1; b1; γ, β) and UCV n
λ (f, g; γ, β) = UCV n

λ,l,m(a1; b1; γ, β).

Definition 1. [25] A sequence {ck}∞k=1 of complex numbers is said to be a subordi-
nating factor sequence if whenever f(z) of the form (1) is analytic, univalent and
convex in U, we have

∞∑
k=1

akckz
k ≺ f(z) (z ∈ U; a1 = 1) . (13)

2. Main Results

To state and prove our main results, we need the following lemma.

Lemma 1. [25] The sequence {ck}∞k=1 is a subordinating factor sequence if and only
if

<

(
1 + 2

∞∑
k=1

ckz
k

)
> 0 (z ∈ U) . (14)

Theorem 2. A function f(z) ∈ A of the form (1) is in the class SPnλ (f, g; γ, β) if

∞∑
k=2

[k(1 + β)− (α+ β)] [1 + λ(k − 1)]n |bk| |ak| ≤ 1− γ, (15)

where g (z) is given by (2), −1 ≤ γ < 1, β ≥ 0, λ ≥ 0 and n ∈ N0.
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Proof. It suffices to show that

β

∣∣∣∣∣z(Dn
λ(f ∗ g)(z))

′

Dn
λ(f ∗ g)(z)

− 1

∣∣∣∣∣−<
{
z(Dn

λ(f ∗ g)(z))
′

Dn
λ(f ∗ g)(z)

− 1

}
< 1− γ (z ∈ U),

we have

β

∣∣∣∣∣z(Dn
λ(f ∗ g)(z))

′

Dn
λ(f ∗ g)(z)

− 1

∣∣∣∣∣−<
{
z(Dn

λ(f ∗ g)(z))
′

Dn
λ(f ∗ g)(z)

− 1

}

≤ (1 + β)

∣∣∣∣∣z(Dn
λ(f ∗ g)(z))

′

Dn
λ(f ∗ g)(z)

− 1

∣∣∣∣∣
≤

(1 + β)
∞∑
k=2

(k − 1) [1 + λ(k − 1)]n |bk| |ak| |z|k−1

1−
∞∑
k=2

[1 + λ(k − 1)]n |bk| |ak| |z|k−1

<

(1 + β)
∞∑
k=2

(k − 1) [1 + λ(k − 1)]n |bk| |ak|

1−
∞∑
k=2

[1 + λ(k − 1)]n |bk| |ak|
.

This last expression is bounded above by (1− γ) if (14) is satisfied.

By virture of (12) and Theorem 2, we have

Corollary 3. A function f(z) ∈ A of the form (1) is in the class UCV n
λ (f, g; γ, β)

if
∞∑
k=2

k [k(1 + β)− (α+ β)] [1 + λ(k − 1)]n |bk| |ak| ≤ 1− γ,

where g (z) is given by (2), −1 ≤ γ < 1, β ≥ 0, λ ≥ 0 and n ∈ N0.

Let SPn∗λ (f, g; γ, β) and UCV n∗
λ (f, g; γ, β) denote the classes of functions f(z) ∈

A of the form (1) whose coefficients satisfy the conditions (15) and (16), respec-
tively. We note that SPn∗λ (f, g; γ, β) ⊆ SPnλ (f, g; γ, β) and UCV n∗

λ (f, g; γ, β) ⊆
UCV n

λ (f, g; γ, β).

Theorem 4. Let the function f(z) defined by (1) be in the class SPn∗λ (f, g; γ, β),
where g (z) is given by (2), β ≥ 0, −1 ≤ γ < 1, λ ≥ 0 and n ∈ N0.Then

(2 + β − γ)(1 + λ)n |b2|
2[1− γ + (2 + β − γ)(1 + λ)n |b2|]

(f ∗ h)(z) ≺ h(z) (z ∈ U;h ∈ CV ) (16)
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and

<(f(z)) > −1− γ + (2 + β − γ)(1 + λ)n |b2|
(2 + β − γ)(1 + λ)n |b2|

(z ∈ U). (17)

The constant
(2 + β − γ)(1 + λ)n |b2|

2[1− γ + (2 + β − γ)(1 + λ)n |b2|]
is the best estimate.

Proof. Let f(z) ∈ SPn∗λ (f, g; γ, β) and suppose that h(z) = z +
∞∑
k=2

ckz
k ∈ CV .

Then we readily have

(2 + β − γ)(1 + λ)n |b2|
2[1− γ + (2 + β − γ)(1 + λ)n |b2|]

(f ∗ h) (z)

=
(2 + β − γ)(1 + λ)n |b2|

2[1− γ + (2 + β − γ)(1 + λ)n |b2|]

(
z +

∞∑
k=2

akckz
k

)
. (18)

Thus, by Definition 1, the assertion of our theorem will hold if the sequence{
(2 + β − γ)(1 + λ)n |b2|

2[1− γ + (2 + β − γ)(1 + λ)n |b2|]
ak

}∞
k=1

(19)

is a subordinating factor sequence, with a1 = 1. In view of Lemma 1, this is
equivalent to the following inequality

<

{
1 +

∞∑
k=1

(2 + β − γ)(1 + λ)n |b2|
1− γ + (2 + β − γ)(1 + λ)n |b2|

akz
k

}
> 0 (z ∈ U). (20)

Now since

[k(1 + β)− (γ + β)] [1 + λ(k − 1)]n (β ≥ 0;−1 ≤ γ < 1;λ > 0;n ∈ N0)

is an increasing function of k, we have

<

{
1 +

∞∑
k=1

(2 + β − γ)(1 + λ)n |b2|
1− γ + (2 + β − γ)(1 + λ)n |b2|

akz
k

}

= <

1 +
(2 + β − γ)(1 + λ)n |b2|

1− γ + (2 + β − γ)(1 + λ)n |b2|
z +

∞∑
k=2

(2 + β − γ)(1 + λ)n |b2| akzk

1− γ + (2 + β − γ)(1 + λ)n |b2|


≥ 1− (2 + β − γ)(1 + λ)n |b2|

1− γ + (2 + β − γ)(1 + λ)n |b2|
r−

∞∑
k=2

[k(1 + β)− (α+ β)] [1 + λ(k − 1)]
n |bk| |ak| rk

1− γ + (2 + β − γ)(1 + λ)n |b2|
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> 1− (2 + β − γ)(1 + λ)n |b2|
1− γ + (2 + β − γ)(1 + λ)n |b2|

r − 1− γ
1− γ + (2 + β − γ)(1 + λ)n |b2|

r

= 1− r > 0 (|z| = r < 1), (21)

where we have used the assertion (15) of Theorem 2. Thus (20) holds true in U.
This proves the first assertion. The inequality (17) follows from (16) by taking

h(z) =
z

1− z
= z +

∞∑
k=2

zk ∈ CV . (22)

To prove the sharpness of the constant
(2 + β − γ)(1 + λ)n |b2|

2[1− γ + (2 + β − γ)(1 + λ)n |b2|]
, we con-

sider the function f0(z) defined by

f0(z) = z − 1− γ
(2 + β − γ)(1 + λ)n |b2|

z2 (β ≥ 0;−1 ≤ γ < 1;λ > 0;n ∈ N0), (23)

which is a member of the class SPn∗λ (f, g; γ, β). Then from the relation (16), we
obtain

(2 + β − γ)(1 + λ)n |b2|
2[1− γ + (2 + β − γ)(1 + λ)n |b2|]

f0(z) ≺
z

1− z
. (24)

It can be easily verified that

min
|z|≤1
<
(

(2 + β − γ)(1 + λ)n |b2|
2[1− γ + (2 + β − γ)(1 + λ)n |b2|]

)
= −1

2
, (25)

this shows that the constant
(2 + β − γ)(1 + λ)n |b2|

2[1− γ + (2 + β − γ)(1 + λ)n |b2|]
is best possible, and

the proof of Theorem 4 is completed.

Similarly from (12) and Theorem 4, we can prove the following theorem.

Theorem 5. Let the function f(z) defined by (1) be in the class UCV n∗
λ (f, g; γ, β),

where g (z) is given by (2), β ≥ 0, −1 ≤ γ < 1, λ ≥ 0 and n ∈ N0.Then

(2 + β − γ)(1 + λ)n |b2|
1− γ + 2(2 + β − γ)(1 + λ)n |b2|

(f ∗ h)(z) ≺ h(z) (z ∈ U;h ∈ CV ) (26)

and

<(f(z)) > −1− γ + 2(2 + β − γ)(1 + λ)n |b2|
2(2 + β − γ)(1 + λ)n |b2|

(z ∈ U). (27)

The constant
(2 + β − γ)(1 + λ)n |b2|

1− γ + 2(2 + β − γ)(1 + λ)n |b2|
is the best estimate.
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Remark 1. (i) Taking bk = 1 in Theorem 4, we obtain the result of Aouf et al. [6,
Theorem 1];

(ii) Taking

bk =

[
Γ (k + 1) Γ (2− α)

Γ (k + 1− α)

]n
(α 6= 2, 3, 4, ...) ,

in Theorems 4 and 4, respectively, we obtain the results of Aouf and Mostafa [4,
Theorems 2.4 and 2.8, respectively];

(iii) Taking

bk =

[
(a)k−1
(c)k−1

]n (
a, c ∈ R+

)
,

in Theorem 4, we obtain the result of Prajapat and Riana [19, Theorem 1].

Taking bk = [Γk]
n , where Γk is given by (9), in Theorems 4 and 5, we obtain

the following results for the classes SPnλ,l,m(a1; b1; γ, β) and UCV n∗
λ,l,m(a1; b1; γ, β),

respectively.

Corollary 6. Let the function f(z) defined by (1) be in the class SPnλ,l,m(a1; b1; γ, β),
where g (z) is given by (2), β ≥ 0, −1 ≤ γ < 1, λ ≥ 0 and n ∈ N0.Then

(2 + β − γ)(1 + λ)n |[Γ2]
n|

2[1− γ + (2 + β − γ)(1 + λ)n |[Γ2]
n|]

(f ∗ h)(z) ≺ h(z) (z ∈ U;h ∈ CV )

and

<(f(z)) > −1− γ + (2 + β − γ)(1 + λ)n |[Γ2]
n|

(2 + β − γ)(1 + λ)n |[Γ2]
n|

(z ∈ U).

The constant
(2 + β − γ)(1 + λ)n |[Γ2]

n|
2[1− γ + (2 + β − γ)(1 + λ)n |[Γ2]

n|]
is the best estimate.

Corollary 7. Let the function f(z) defined by (1) be in the class UCV n∗
λ,l,m(a1; b1; γ, β),

where g (z) is given by (2), β ≥ 0, −1 ≤ γ < 1, λ ≥ 0 and n ∈ N0.Then

(2 + β − γ)(1 + λ)n |[Γ2]
n|

1− γ + 2(2 + β − γ)(1 + λ)n |[Γ2]
n|

(f ∗ h)(z) ≺ h(z) (z ∈ U;h ∈ CV )

and

<(f(z)) > −1− γ + 2(2 + β − γ)(1 + λ)n |[Γ2]
n|

2(2 + β − γ)(1 + λ)n |[Γ2]
n|

(z ∈ U).

The constant
(2 + β − γ)(1 + λ)n |[Γ2]

n|
1− γ + 2(2 + β − γ)(1 + λ)n |[Γ2]

n|
is the best estimate.
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