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A GENERALIZED CLASS OF HARMONIC UNIVALENT
FUNCTIONS ASSOCIATED WITH SALAGEAN OPERATORS
INVOLVING CONVOLUTIONS

P. SHARMA, S. PORwWAL, A. KANAUJIA

ABSTRACT. In this paper, we introduce a generalized class Sk (m,n, ¢, ;) ,
i € {0,1} of harmonic univalent functions. A sufficient coefficient condition for the
normalized harmonic function to be in this class is obtained. It is also shown that
this coefficient condition is necessary for its subclass TS"H (m,n, ¢,1;a). We further,
obtain extreme points, bounds and a covering result for the class ’TSig (m,n, ¢, Y; a)
and show that this class is closed under convolutions and convex combinations. In
proving our results certain conditions on the coefficients of ¢ and ¢ are considered
which lead various well-known results proved earlier.
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1. INTRODUCTION

A continuous complex-valued function f = u + iv defined in a simply connected
domain D is said to be harmonic in D if both u and v are real harmonic in D. In
any simply connected domain D, we can write f = h+ g, where h and g are analytic
in D. We call h the analytic part and ¢ the co-analytic part of f. A necessary and
sufficient condition for f to be locally univalent and sense-preserving in D is that
()] > |¢'()], = € D (see [3)).

Denote by Sy the class of function f = h 4+ g which are harmonic, univalent and
sense-preserving in the open unit disc U = {z : |z| < 1} for which f(0) = f.(0)—1 =
0. Then for f = h+ g € Sy we may express the analytic functions h and g as

h(z) =z+ Zakzk, g(z) = Zbkzk, |b1] < 1. (1)
k=2 k=1
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Note that the class Sg reduces to the class S of normalized analytic univalent
functions if the co-analytic part of f i.e. ¢ = 0. For this class f(z) may be expressed
as

F) =24+ S ant. (2)
k=2

For more basic results on harmonic functions one may refer to the following
introductory text book by Duren [7] (see also [1], [12], [13] and the references there
in). For f = h+g with h and g are of the form (1), Jahangiri et al. [10] defined the
modified Salagean operator D" for n € Ny = NU {0}, by

D"f(z) =D"h(z) + (—1)"D"g(z), (3)
where

D"h(z) =z + Z k"apz®, Dg(z) = Z kb 2",
k=2 k=1

(see also [14]).

Several authors such as ([4], [5], [6], [8], [11] and [17]) introduced and studied
various new subclasses of analytic univalent as well as harmonic univalent functions
with the help of convolution.

Motivated with the earlier introduced subclasses of Sy, in this paper, we define
a generalized class S% (m,n,d, ;) of functions f = h + g € Sy satisfying for
i € {0,1}, the condition

%{U%uw¢@;04W“Dw@M¢w}>%

Drh(z) 4+ (=1)"Drg(2)

(4)

where m,n € Ng, m > n, 0 < a < 1, and ¢(2) = 2z + > 5o, Ap2® and (2) =
Z4+ > gy piz* are analytic in U with the conditions A; > 1, jy, > 1. The operator
“*” gtands for the Hadamard product or convolution of two power series.

We further denote by TS8% (m,n, ¢,v; a), a subclass of St (m, n, ¢,1; ) consist-
ing of functions f = h 4+ g € Sy such that h and g are of the form

Wz) =2= Y laglz", g(z) = (=)™ ol ¥, (o] < 1. (5)
k=2 k=1

It is interesting to note that by specializing the parameters we obtain the follow-
ing known subclasses of Sy studied earlier by various researchers.

(i) 8% (m,n, = 125 @) = Sg(m,n; o) and TS8Y% (m,n, T T ) =

TSu(m,n;«) studied by Yalcin [17].
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(ii) S%(n+1,n, 2, 175 a) = Sp(n;a) and TS%(n+1,n, T, T ) =
TS u(n;a) studied by Jahangiri et al. [10].

a) = Sy (a) and
= TS} (a) studied by Ja-

(i) S5(1,0, 25, 125:0) = S (0.0, =, ﬁ
TSH(L,0, 1%, 53 0) = TS(0,0, Tt gt
hangiri [9].

(iv) S92 L 125, 125:0) = Kn(a) and TSY(2 L, 122, 2:0) = TKr(a) studied
by Jahangiri [9].

(v) S1(0,0,6,150) = Su(@, ¥ ) and TSY(0,0,6,030) = TSk (6, s ) studied
by Frasin [8].

(Vl) S (271’1 21— Zao) ’CHv TSO( ) 71ZZ71 27 ) T,CH)
S%(1, 0,1%,15:;0) = S and TSY%(1, 0, 1%, 1:;0) = TS} studied by Sil-
verman [15], Silverman and Silvia [16](see also [2]).

In the present paper, we prove a number of sharp results including, coefficient in-
equality, bounds, extreme points, convolution and convex combination for functions
in TS% (m,n, ¢,; ) under certain conditions on the coefficients of ¢ and .

2. MAIN RESULTS

We begin with a sufficient coefficient condition for functions to be in class 8%, (m, n, ¢, ¥; a).

Theorem 1. Let a function f = h+ g, where h and g are of the form (1), satisfies

A k k™ 1)mti—nggn
yo Ak okt mz“’“ — byl < 1, (6)
k=2

where 1 € {0,1},m € Nyn € No, m >n, Ag,ur > 1,k > 1,0 < a <1 and in case
m=0=n, \g,ur >k, k>1. Then f is sense-preserving, harmonic univalent in

Uand f € SZ'H(m,n,qb,z/J;a).
Proof. Under the given hypothesis, we note that for k£ > 1,

A\ k™ — aknjk - ,ukkm _ (_1)m+i—nakn

k<

- 11—« l1—a
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Hence, for f = h + g, where h and g are of the form (1), we get that

= _ > ek — ak™
IW(z) > 1—§:m%vk1>1_§:m@4>1—§jizﬁszmﬂ
k=2 k=2 k=2
o k™ — (1) rakn - - k1 < |
> bel =S kb > S kb >
> 3 o= ok > S ke 2 )

which proves that f is sense-preserving in U. To show that f is univalent in U,
suppose z1, 29 € U such that z; # zo, then

’f(zﬁ — f(z22) > g(21) — g(22)
h(zl) — h( - h(zl) — h(ZQ)

ZQ)

- 1_ Ziilbk(Zf—ZQ“)
(21 — 22) + 2320 an(2f — 25)
km_(—1 m-+i—n km
| SEaknl |, SR Sy
1= 2R klaxl| 1— Y0, Mkroakt o =

Now, to show that f € S%(m,n,,1;a), we use the fact that Re{w} > «, if and
onlyif [l —a+w|>1+a—uw|.
Hence, it suffices to show that

Q(z) = [A(z) + (1 = )B(2)| = [A(z) = (1 + @) B(2)| = 0, (8)

where A(z2) = D™h(2) * ¢(2) + (=1)™" Dmg(z) *1(z) and
B(z) = D"h(z) + (—=1)"Dng(z).
Substituting the corresponding series expansions in the expressions of A(z) and
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B(z), we obtain from (8), that

2-a)z+ > (k™M + (1 — a)k™)ap 2"+
k=2

0o
m+i Z Mk’ + m+i—n(1 - a)k”]bkzk
k=1

Qz) =

- ‘—az + Z K™ Ae — (1 + o)k agz"+

k=2
(=)™ ke — (1) (1 4 a)k by
k=1
> 2|z [ (1= 0) = Y (B™ M — ak™) |ag| = > [K™ e — (=)™ ak"] |by|
k=2 k=1

> 0,

if (6) holds. This proves the Theorem 1.
Sharpness of the coefficient inequality (6) can be seen by the function

11—«
_ k
Z+Z)\k _ +Zukkm_ m—l—z nakn Ye=™,
where i € {0,1},0 < a < 1, m € Nyn € Ng, m > n, A\, > 1,k > 1 in case
m=0=n, g, >k, k>1and > poo |k + D> ooy lukl = 1.

We next show that the above sufficient coefficient condition is also necessary for
functions in the class TS% (m,n, ¢, ¥; ).

Theorem 2. Let the function f = h 4+ g be such that h and g are given by (5).
Then, f € TS (m,n, ¢,v;a) if and only if

0N k™ — ak™ prk™ — (—=1)m ek
Z bl ) <2

where a; =1, m € Nyn € Ng, m > n, A\, up > 1,k> 1,0 < a <1 and in case
m=0=mn, Mg, ux >k, k> 1.

Proof. The if part, follows from Theorem 1. To prove the "only if” part, let f €
TS84 (m,n,¢,1; «), then from (4), we have

" { D™h(2) * ¢(2) + (=)™ D"g(2) * 6 (2)
Dh(z) + (~1)"D"g(2)

—oz}>0,z€U,
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which is equivalent to

(1 —a)z =322 5 (k™ — ak")]ak]zk—i-
(1) 2570 (k™ — (1) ak™) [y, |2

R .
z— Yopeg kMag|2k + (—1)mAiiAn ST kb 2R

If we choose z to be real and z — 17, we get

(1= ) = Yo k™ — ak™)|ar] = 302 (k™ — (=1)™ " ak™)|by |
1 =30, knag] + (—1)mtimtin 3700 kb

>0

or, equivalently,
D Owk™ = ak™ag| + Y (k™ = (=1)" T k™) b < 1 - a,
k=2 k=1

which is the required condition (9).

For the classes TSg(m,n; ) and TS g (¢, 1; a) mentioned in Section 1, Theorem
2 yields following results which include the results for other known classes discussed
in Section 1.

Corollary 3. [17] Let the function f = h+g be such that h and g are given by (5).
Then, f € TSg(m,n;a) if and only if

(k™ — k™ Em — (1) ok
Z(ram =D |bkr)s2, (10)
—« 1l -«

where ap =1, meNneNg, m>n,0<a<1.

Corollary 4. Let the function f = h+ g be such that h and g are given by (5).
Then, f € TSu(¢,¢;a) if and only if

Z( ] + arbk|)<2, (11)

11—« 1—a
k=1

where a1 =1, Mg, e >k, k> 1,0< < 1.
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3. BOUNDS

Our next theorem provides the bounds for the functions in 78?5 (m, n, ¢, 1; &) which
is followed by a covering result for this class.

Theorem 5. Let f = h + g with h and g are of the form (5) belongs to the class
TSt (m,n, ¢, ;) for functions ¢ and v with non-decreasing sequences { i}, {1}
satisfying g, pr > A2, k > 2, then

1-— (—l)m”*”aw | (1—a)r?
1— 1) amxn, —a2n’

1£(2)] < (1+]by])r+ (1 — Iz =7 <1, (12)

and

1—(—1>’”"”‘”“|bll> e |2 =7 <1. (13)

5= A=l (1- =52 e

Proof. We only prove the result for upper bound. The result for the lower bound
can similarly be obtained.

Let f € TS 'g(m,n,¢,1;«a), then on taking the absolute value of f, we get for
|z| =r <1,

[FE)] < @+ [bal)r+ D (law] + [bi])r*
k=2

< (L4 [ba])r 412 (Jak] + [bk])

k=2
(1—a)r? X[ Ak™ — ak™ prk™ — (—1)mtiTnggn
<(1
< +!bﬂ)r+2%_a2ng§ x| + = i
1— (—1)mti—ng (1—a)r?
<(1+41b 1— b by (9).
<+ (1- G ) S

The bounds (12) and (13) are sharp for the function given by

1-— (—1)m+i—"a|b | (1—a)z?
l—a U omy, —a2n

f(z) =z+ 0|z + <1 (14)

for |b1] < (1 —a)/(1 — (=1)mTi"q).

A covering result follows from (13).
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Corollary 6. Let f € TSy (m,n, o, ;5 «), then for functions ¢ and v with non-
decreasing sequences {\i},{ur} satisfying A, px > Ao, k > 2,

(1-a) 1— (—1)mti—ng
: 1— -1 .
{w lwl < < 2xg —a2t ) T\ T2y —a2n bily < J(0)
Further, for the classes TSg(m,n;«) and TSy (¢, ¥; a), Theorem 5 yields fol-

lowing results which include the results for other known classes discussed in Section
1.

Corollary 7. [17] Let f = h 4+ g with h and g are of the form (5) belongs to the
class TSg(m,n;a), then

1— (_1);nna|b1|> (1—a)r? der<1i (15)

1F(2)] < (14 |ba))r + (1 _

1-— 2m — q2n’
and
1—(-1)" "« (1—a)r?
> (1— —(1- = :
712 @ =l (1= A ) E29 0 i —rcn o

Further,

{w o] < <1—2ml__2‘2n> + (1 _277(1__1)(;71“ . 1) |b1|} c f(U).

Corollary 8. Let f = h+ g with h and g are of the form (5) belongs to the class
TSu(p,v;a) for functions ¢ and 1p with non-decreasing sequences {\} ,{ux} sat-
isfying i, i > Ao, k > 2, then

1+« (1—a)r?
< - —_— =
sl @b (1- 2m) So0 0 g —rcn an
and ( )12
1+« l—a)r
>(1-— —|1- —_— = 1. 1
@Iz b= (1= ) S22 =< ay)
Further,

{w ] <A21_a Co—14(1 —)\2+2a)|b1|)} c f(U).
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4. EXTREME POINTS
In this section we determine the extreme points of 7Sy (m,n, ¢, ;).

Theorem 9. Let hi(z) = z, hi(z) = z — ﬁzk (k > 2) and gx(z) = z +

M,ﬁ;l_)znj)_ﬂif;,?‘iknz’f (k> 1). Then f € TS'u(m,n,¢,v;a), if and only if it can
be expressed as

[e.9]

F(2) = (zhi(2) + yegr(2)), (19)

k=1
whej“e x> 0,y > 0 and Y 72 (zx + yg) = 1. In particular, the extreme points of
TS u(m,n, ¢,;a) are {hg} and {gx}.

Proof. Suppose that

= (@rhi(2) + yrgr(2))-
k=1

Then
f(z) = i(wk + yk)z i 1-a T2+
A k™ k
k=1 k=2
. > 1l -«
-1 m+i—1 ' <k
( ) kzzl Mkkm _ (_1)m+zfnaknykz
:Z_i -« .%'Z—i— m+7, 12 1_a yzk
L k™ — ok k [k — (=1)mti-nggn
e TSy (m,n, ¢, ;).
Since,

i)\kkm—ak” 1—a
T—a k™ —akn ®

k=2
~ 4
Em — (=1)m Tkt 1—«
+Z & ( ) m m+i—n nyk
P -« urk™ — (—=1) ak
oo (e.)
=D Tt D v
k=2 k=1
=1- T <1
Conversely, if f € TS'g(m,n,¢,¥;a) , then |a| < ﬁ, k > 2 and
k] < e k> 1 Setting @y = M= ay| k> 2 and g =
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“’“kmf(fllzzﬂ_nakn\bk], k > 1.Then, by Theorem 2, > 72 oz + Y oy ye < 1. We
define 21 =1—> 72 o2 — > oo Y& > 0. Consequently, we can see that f(z) can be
expressed in the form (19).

This completes the proof of Theorem 9.

5. CONVOLUTION AND CONVEX COMBINATIONS

In this section, we show that the class TS’ m(m,n, ¢,1;a) is invariant under convo-
lution and convex combinations of its members.
For harmonic functions of the form

o0 oo
2)=z2=> lagls" + (=1 " [be[z
h=2 k=1

and -
F(Z):Z—Z|Ak|z +(=1)mHis IZ|B1€|Z
k=2
we define the convolution
(f*F)(z) = f(z) = Z JarAg| 2" + (1) (b By[2.

=2 k=1
Theorem 10. If f € TS g(m,n, ¢, a) and F € TS (m,n, ¢, ;) then fxF €
7-CS‘ZI{(T’,% n, ¢7 w7 CY).

Proof. Let f(z) = z2—> 10 |ak|zk+(fl)m+i_1 S [bk|2F and F(2) = 2—Y 50, | Ag|2F+
(=1)m+i=L 5% | Bi|2* be in TS i (m,n, ¢, v; a). Then by Theorem 2, we have

)\ k k m—H n kn
3o M ok |+z“k A (20)
k=2
and
k™ k™ )mH nakn
Z 17 Z |Bi| < 1. (21)
k=2

From (21), we conclude that |Ag| § 1, k=2,3,...and |Bg| <1, k=1,2,...
So, for f x F', we may write

Apk™ E™ 1)mtiznggn
Z %Mkz‘lkl + Z . (1 _)a |0y, B
k=2 k=1
/\kk Hkk )m+i—nak,n
br| < 1.
D R e
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Thus f* F € TS g(m,n, ¢,v; ).

Finally, we prove that TS® g(m,n,¢,1; ) is closed under convex combination
of its members.

Theorem 11. The class TSiH(m,n, o, ;) is closed under conver combination.

Proof. For j = 1,2,... suppose that f; € TS g (m,n, ¢,v;a) where f;(z) is given by

fj(z):'z_Z‘aﬁk|Z + ( m—H ”Z|bjk|z
k=2
Then, by Theorem 2, we have
)\kk Nkkm _ (_1)m+i—nakn
> (A T ) <2 @)

k=1

For Z?; t; =1,0 <t; <1, the convex combination of f;(z) may be written as

thfj(z):z—ZZt ‘a]k‘z +( m+l 1zzt ’b]k”z
j=1

k=2 j=1 k=1j=1
Now
[e.e] [e.e] [e.e]
Ak™ — ak™ prpk™ — (=1)mtiTnggn
> iZtlaMH > _tilbi,
l-« 11—« ,
k=1 = j=1
- Apk™ — ak™ pk™ — (—1)mHinakn
:Zti ﬁ’aj,k‘ + 1—a |bj,k|
=1 k=1
o
<2 Zti =2
j=1

and so by Theorem 2, we have > 22, t; f;(2) € TS g (m,n,é, ;).
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