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Abstract. D-metric space is an interesting nonlinear generalization of metric
space which was discovered and studied in details by B.C. Dhage in his Ph.D thesis.
In this paper, we establish Cantor’s intersection theorem and Baire’s category the-
orem in D-metric spaces using the modified concept of open ball given by R. Asim
et al.
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1. Introduction

In [7] Dhage introduced a new structure of a generalized metric space, that is, D-
metric space in his Ph.D. thesis [6] in an attempt to obtain similar result of these
for metric space. A number of fixed point theorems for nonlinear contraction type
mappings have been done in metric space [ see for example [2], [3] ] and sometimes
on some generalized metric structure in [ [4], [5] ]. Dhage’s definition uses the sym-
metry and tetrahedral axioms present in Gahler’s definition for 2-metric space and
includes the coincidence axiom that d(x, y, z) = 0 iff x = y = z. Geometrically, in
plane, 2-metric [ see [10], [14] ] represents the area of a triangle whereas D-metric,
represents the perimeter of the triangle. After introducing D-metric Dhage [8]-[9]
developed some typologies in this structure. He also defined the concept of open
balls and claimed that it forms a basis for some topology. Dhage presented topo-
logical structure in such spaces in his papers [7]-[9]. Dhage [8] proved some results
on completeness and compactness of D-metric space to find Cantor’s Intersection
Theorem. Unfortunately most of the claims by Dhage are not remained true. As a
result, it seems to be reasonable to revise most of the results of Dhage. R. Asim et
al. [1] defined a modified open ball in this setting and consequently several authors
modified various results of Dhage. In this paper, we take the concept of open balls
defined by R. Asim et al. and show that it forms a basis for the D-metric topology
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on X. Also, we prove Cantor’s intersection theorem and Baire’s category theorem
in D-metric space using it. Let us recall the definition of D-metric space.

Definition 1 (c.f [12]). Let X be a non empty set. A function D : X ×X ×X →
R+ is called D-metric on X if it satisfies the following properties,

1. D(x, y, z) ≥ 0 ∀x, y, z ∈ X.
2. D(x, y, z) = 0⇔ x = y = z.
3. D(x, y, z) = D(P{x, y, z}) where P is permutation on {x, y, z}.
4. D(x, y, z) ≤ D(x, y, a) +D(x, a, z) +D(a, y, z) ∀x, y, z, a ∈ X.

Then the pair (X,D) is called a D-metric space.

2. Concept of Open Ball

First we present the notion of open ball in D-metric space in the line of B.C. Dhage
[8] as follows.
Let x0 ∈ X, r > 0 and an open ball centered at x0 and radius r is

B̂(x0, r) =
⋂
y∈X
{x, y ∈ X : D(x0, x, y) < r}.

Note that this definition is not an appropriate one and so most of the claims
concerning the fundamental topological properties of D-metric spaces are incorrect,
that is there is a question mark on the validity of many results obtained by Dhage in
these spaces, for detailed study one is referred to see the examples in [15]. Afterwards
this definition was rectified by Naidu S.V.R [11] in the following way

B∗(x0, r) = {x ∈ X : D(x0, x, x) < r},

B̂(x0, r) = {x0} ∪ {x ∈ X : sup
y∈X

D(x0, x, y) < r}.

It should be noted that the existence of sup
y∈X

D(x0, x, y) < r is not always possible.

However sup
y∈B∗(x0,r)

D(x0, x, y) < r always exists. Further, R. Asim et al. [1] believed

that there is some typing error in defining B̂(x0, r) and hence in [11] this concept
may be refined in the following way:

Definition 2. Let (X,D) be a D-metric space, x0 ∈ X and r > 0 then B̂(x0, r) is
called D-open or open ball if

B̂(x0, r) = {x0} ∪ {x ∈ X : sup
y∈B∗(x0,r)

D(x0, x, y) < r}

where B∗(x0, r) = {x ∈ X : D(x0, x, x) < r}.
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Dhage [[8], [9]] observed that a topology can be generated in X by taking the
collection of allD-open balls as a sub-basis, which we call here theD-metric topology,
to be denoted by τ . Thus (X, τ) is a D-metric topological space. Members of τ are
called D- open sets and their complements, D-closed sets. But in [8], conclusion
for B(x0, r) in theorems 3.1, 3.2, 3.3, and 3.4 are false, for detailed see [11]. In this
situation, we prove the following results by modified definition of open ball by R.
Asim et al.

Remark. If 0 < r1 < r2 then

(i) B∗(x0, r1) ⊂ B∗(x0, r2).

(ii) B̂(x0, r1) ⊂ B̂(x0, r2).

Definition 3. A set U in a D-metric space is said to be open if it contains a ball
of each of its points.

Theorem 1. Every ball B̂(x0, r), x ∈ X, r > 0 is an open set in X i.e. it contains
a ball of each of its points.

Proof. Let x0 be an arbitrary point in X, r > 0. Consider the ball B̂(x0, r) in X
and let x ∈ B̂(x0, r) then sup

a∈B∗(x0,r)
D(x0, x, a) = r1 < r and D(x0, a, a) = r2 < r.

Now we choose 0 < r0 = max{r1, r2} < r then

sup
a∈B∗(x0,r)

D(x0, a, a) ≤ r0 < r3 < r.

This implies x ∈ B̂(a, r3) ⊂ B̂(x0, r), r3 > 0. This proves that B̂(x0, r) is an open
set in X.

2.1. D-metric topology

In this section we discuss the topology on D-metric space X. We show that the
collection β = {B̂(x0, r) : x ∈ X, r > 0} of D-open balls induces a topology on X,
called D-metric topology.

Theorem 2. The collection β of all D-balls forms a basis for a topology τ on X.

Proof. Let τ be a topology on X. To show that the collection β is a basis for τ it is
enough to show that the collection β satisfies the following conditions:

(i) X ⊂ (∪x∈XB̂(x, r)) and
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(ii) if x ∈ B̂(x1, r) ∩ B̂(x2, r), r > 0 for some x1, x2 ∈ X, is any point, then
sup

a∈B∗(x1,r)
D(x1, x, a) = s1 < r and sup

b∈B∗(x2,r)
D(x2, x, b) = s2 < r for some

a ∈ B∗(x1, r) and b ∈ B∗(x2, r). Therefore we choose 0 < s = max{s1, s2} < r
then from remark (ii) we have B̂(x, r0) ⊂ B̂(x1, r) ∩ B̂(x2, r), s < r0 < r.

These complete the proof.

Thus the D-metric space X together with a topology τ generated by D-metric
D is called a D-metric topological space and τ is called D-metric topology on X.

A topological space X is called D-metrizable if there exists a D-metric D on X
that induces a topology on X. A D-metric space X is D-metrizable space together
with the specific D-metric D that induces the topology of X.

A set U is τ -open in X in the D-metric topology τ induced by D-metric D if
and only if for each x ∈ U , there is a r > 0 such that B̂D(x, r) ⊂ U . Similarly, a set
V is called τ -closed if its compliment X \ V is τ -open.

Lemma 3. A subset U of (X, τ) is D-open if and only if for any x ∈ U there are
finite real numbers r1, r2, ..., rn > 0 such that

x ∈ B̂(x, r1) ∩ ... ∩ B̂(x, rn) ⊂ U.

Proof. Since each set of the form

B̂(x, r1) ∩ ... ∩ B̂(x, rn)

is D- open by definition, the sufficiency of the condition follows immediately.
Conversely let U be D-open and x ∈ U . Then there exists a finite number of D-

balls B̂(xi, ri), i = 1, 2, 3, ...,m (say) such that

x ∈
m⋂
i=1

B̂(xi, ri) ⊂ U.

Since x ∈ B̂(xi, ri), so D(x, xi, y) = si < ri where y ∈ B∗(xi, ri). Choose ti <
ri−si

2 .

Then B̂(x, ti) ∩ B̂(xi, ti) ⊂ B̂(xi, ri) and this is true for i = 1, 2, 3, ...,m. So

x ∈ B̂(x, t1) ∩ B̂(x1, t1) ∩ B̂(x, t2) ∩ B̂(x2, t2) ∩ · · · ∩ B̂(x, tm) ∩ B̂(xm, tm)

⊂
m⋂
i=1

B̂(xi, ri) ⊂ U.

This proves the lemma.
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Theorem 4. Arbitrary union and finite intersection of open balls B̂(x, r), x ∈ X
are open.

Proof. Let x ∈ ∪B̂(xi, ri) ⊂ U then for some i, x ∈ B̂(xi, ri) ⊂ U hence U is open.
Next part of the theorem follows immediately from the Lemma 3.

Definition 4. A set U in a D-metric space X, is said to be closed if its complement
X − U is τ open.

Theorem 5. Finite union and arbitrary intersection of closed balls in a D-metric
space are closed.

We omit the proof as it can be easily proved.

Definition 5. Ā is called the D-closure of A if it is the intersection of all D-closed
sets containing A.

B∗(x0, r) = {x ∈ X|D(x0, x, x) ≤ r} is the closure of B∗(x0, r) and

B̂(x0, r) = {x ∈ X| sup
y∈B∗(x0,r)

D(x0, x, y) ≤ r} is the closure of B̂(x0, r).

Remark. It is clear that B∗(x0, r) ⊂ B∗(x0, r) and B̂(x0, r) ⊂ B̂(x0, r).

Lemma 6. If there exist a point x ∈ B̂(x0, r) with D(x0, x, x) = r1 < r, then

B̂(x0, r1) ⊂ B̂(x0, r).

Proof. Since x ∈ B̂(x0, r) with D(x0, x, x) = r1 < r. Let

z ∈ B̂(x0, r1) = {z ∈ X| sup
x∈B∗(x0,r1)

D(x0, z, x) ≤ r1}

⊆ {z ∈ X| sup
x∈B∗(x0,r)

D(x0, z, x) < r}

= B̂(x0, r).

Definition 6. x ∈ (X,D), is called a D-limit point of A ⊂ X if for any D-open set
U containing x, A ∩ (U − {x}) 6= φ.

Definition 7. A sequence {xn} in a D-metric space (X,D) is said to be convergent
(or D-convergent) if there exists an element x in X with the following property:
given ε > 0 there exists an n0 ∈ N such that D(xm, xn, x) < ε for all m,n ≥ n0.

In such a case, it is said that {xn} converges to x and x is a limit point of {xn}
and write xn → x.
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Definition 8. A sequence {xn} in a D-metric space (X,D) is said to be Cauchy
(or D-Cauchy) if given ε > 0 there exists an n0 ∈ N such that D(xm, xn, xp) < ε for
all m,n, p ≥ n0.

Definition 9. (X,D) is said to complete if every Cauchy sequence in X is converges
to a point in X.

On the basis of definition of convergence of a sequence in (X,D) the following
lemma is obtained.

Lemma 7. A sequence {xn} is convergent to x in (X,D) if and only if for any D-
open set U containing x there exists a positive integer m such that xn ∈ U ∀ n ≥ m.

Proof. Assume first the given condition. Let x ∈ X and ε > 0. Since B̂(x, ε) is a
D-open set containing x, there exists m ∈ N such that xn ∈ B̂(x, ε) ∀ n ≥ m i.e.
D(xn, xn, x) < ε ∀ n ≥ m which shows that D(xn, xn, x)→ 0 as n→∞. Thus {xn}
converges to x in (X,D).

Conversely let {xn} be convergent to x in (X,D). Let U be a D- open set with
x ∈ U . From Lemma 3, we have

x ∈ B̂(x, r1) ∩ B̂(x1, r1) ∩ B̂(x, r2) ∩ B̂(x2, r2) ∩ ...
∩B̂(x, rk) ∩ B̂(xk, rk) ⊂ U.

For some x1, x2, ..., xk ∈ X and r1, r2, ..., rk > 0. Since D(xn, xk, x) → 0 as
n → ∞, there exists mk ∈ N such that D(xn, x, xk) < rk for all n ≥ mk i.e.
xn ∈ B̂(x, rk) ∀ n ≥ mk and this is true for each i = 1, 2, ..., k. Taking m =
max{m1, ...,mk} we obtain

xn ∈ B̂(x, r1) ∩ B̂(x1, r1) ∩ B̂(x, r2) ∩ B̂(x2, r2)...

∩B̂(x, rk) ∩ B̂(xk, rk) ⊂ U, ∀ n ≥ m.

Thus the lemma is proved.

Note: It is known that in a metric space, a set A is closed if and only if every
convergent sequence of points of A converges to a point of A.

Definition 10. A ⊂ X is said to be dense in X if A = X.

Definition 11. A ⊂ X is said to be no-where dense if int(A) = φ where interior of
a set B is defined to be the union of all D-open sets contained in B.
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3. Cantor’s and Baire’s Theorem in D-metric Spaces

Here we prove an analogue of Cantor’s intersection theorem for complete D-metric
spaces and use it to show that such a space cannot be expressed as a countable union
of no-where dense sets under some general situations. For A ⊂ X, we define

δc(A) = sup{D(a, a, c) : a ∈ A}

where c ∈ X.
The quantity δc(A) need not be considered as the diameter of A. However

if (X,D) is bounded in the sense of Dhage and Rhoades [7], [8], and [13] (i.e.
sup{D(a, b, c)}; a, b, c ∈ X} < ∞) then for every A ⊂ X, δc(A) is finite ∀ c ∈ X.
The idea of δc(A) is helpful to prove the following theorems.

Theorem 8. Suppose that (X,D) is a complete D-metric space. If {Fn} is any
decreasing sequence (i.e. Fn+1 ⊂ Fn ∀ n ∈ N) of D-closed sets with δa(Fn) → 0 as

n→∞ ∀ a ∈ X then
∞⋂
n=1

Fn is non-empty and contains at most one point.

Proof. For each positive integer n, let xn be a point of Fn. We show that {xn} is a
Cauchy sequence in X. Since {Fn} is decreasing, xm ∈ Fn ∀ m ≥ n. Now for any
a ∈ X, m ≥ n,

D(xm, xn, a) ≤ δa(Fn)→ 0

as n→∞. This shows that {xn} is a Cauchy sequence in X. Since X is complete,
xn → x (say) in X . We claim that x ∈ ∩Fn. We may assume that xk 6= x from some
k onward, otherwise there is nothing to prove. Let n ∈ N be fixed. Let U be any
D-open set containing x. By Lemma 7, there is n1 ∈ N such that xk ∈ U ∀ k ≥ n1.
Then xk ∈ [U − {x}] ∩ Fn ∀ k ≥ max{n, n1}. This shows that x ∈ F̄n = Fn, since

Fn is D-closed. As this is true for all n ∈ N, x ∈
∞⋂
n=1

Fn.

Finally, we prove that
∞⋂
n=1

Fn contains at most one point. If possible let us

suppose that it contains two distinct points x and y. Choose z ∈ X, z 6= x 6= y.
From the definition of δz(Fn),

D(x, y, z) ≤ δz(Fn) ∀ n ∈ N.

Since δz(Fn) → 0 as n → ∞, D(x, y, z) = 0 which is a contradiction. This proves
the theorem.

To prove the converse of Theorem 8 the following lemma is necessary.
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Lemma 9. For any A ⊂ X and a ∈ X

δa(A) = δa(Ā).

Proof. Since A ⊂ Ā, it follows that δa(A) ≤ δa(Ā). To prove the converse inclusion,
let x, y ∈ Ā. If both x, y belong to A, then clearly D(x, y, a) ≤ δa(A). So suppose
first that one of them, say, x /∈ A but y ∈ A. Let ε > 0 be arbitrary. Since x ∈ Ā.
Now we consider D-open balls y ∈ B̂(x, ε) and a ∈ B̂(x, ε) containing x. Then
x ∈ B̂(y, ε) and x ∈ B̂(a, ε) therefore, x ∈ B̂(y, ε) ∩ B̂(a, ε).

Since D-open balls form a basis for the topology defined on X there exists ε1 > 0
such that x ∈ B̂(x, ε1) ⊂ [B̂(y, ε) ∩ B̂(a, ε)], where 0 < ε1 < ε.

Then as x ∈ Ā there exists z such that z ∈ A ∩ B̂(x, ε1) and this also implies
z ∈ A ∩ B̂(x, ε) as z ∈ A ∩ B̂(x, ε1) ⊂ A ∩ B̂(x, ε).

Therefore

D(x, y, a) ≤ D(x, y, z) +D(x, z, a) +D(z, y, a)

≤ δa(A) + 2ε.

Since this is true for every ε > 0, we conclude that

D(x, y, a) ≤ δa(A) for y ∈ A and x ∈ Ā.

Finally, if x, y ∈ Ā−A then repeating the same argument we can show that in this
case also D(x, y, a) ≤ δa(A). Hence

δa(Ā) = sup{D(x, y, a); x, y ∈ Ā} ≤ δa(A)

and so δa(A) = δa(Ā). This proves the lemma.

The converse of Theorem 8 is contained in the following theorem.

Theorem 10. If in a D-metric space (X,D), for any decreasing sequence of D-

closed sets {Fn} with δa(Fn) → 0 as n → ∞ ∀ a ∈ X,
∞⋂
n=1

Fn consists of a single

point then (X,D) is complete.

Proof. Let {xn} be a Cauchy sequence in X. Let Fn = {xn, xn+1, ...} for any n ∈ N.
Then Fn ⊃ Fn+1 and so Fn ⊃ Fn+1 ∀ n ∈ N. So {Fn} is a decreasing sequence of
D-closed sets. For a ∈ X and ε > 0 arbitrary, there is n1 ∈ N such that

D(xm, xn, a) < ε ∀m,n ≥ n1.

This shows that δa(Fn1) ≤ ε and so by Lemma 9 δa(Fn1) ≤ ε. Since {Fn} is
decreasing, for n ≥ n1, δa(Fn) ≤ δa(Fn1) ≤ ε. Therefore δa(Fn) → 0 as n → ∞.
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Hence by the given condition,
∞⋂
n=1

Fn = {x0}, say. This gives that for any a ∈ X,

D(xn, x0, a) ≤ δa(Fn) → 0 as n → ∞ which implies xn → x0 in X and this proves
the theorem.

Combining Theorem 8 and Theorem 10, we obtain the analogue of Cantor’s
intersection theorem in D-metric spaces.

Theorem 11. A D-metric space (X,D) is complete if and only if for any decreasing

sequence of D- closed sets {Fn} with δa(Fn)→ 0 as n→∞ ∀ a ∈ X,
∞⋂
n=1

Fn consists

of a single point.

The following lemma will be required for the next theorem.

Lemma 12. For any x0 ∈ X and r > 0,

Ĉ(x0, r) = {x0} ∪ {x ∈ X; sup
y∈C∗(x0,r)

D(x0, x, y) ≤ r}

where C∗(x0, r) = {x ∈ X : D(x0, x, x) ≤ r} then Ĉ(x0, r) is said to be a D-closed
ball or D-closed set.

Proof. We will show that no point outside Ĉ(x0, r) is a D-limit point of Ĉ(x0, r).
Let d /∈ Ĉ(x0, r). Then D(x0, y, d) > r. If possible, let d be a D-limit point of
Ĉ(x0, r). Let ε > 0 be given. Since B̂(x0, ε) ∩ B̂(d, ε) is a D-open set containing d,
there exists e ∈ Ĉ(x0, r) ∩ [[B̂(x0, ε) ∩ B̂(d, ε)]− {d}]. Then

D(x0, y, d) ≤ D(x0, y, e) +D(y, e, d) +D(x0, e, d)

< r + 2ε.

Since ε > 0 is arbitrary, we have D(x0, y, d) ≤ r which is a contradiction. Thus d
cannot be a D-limit point of Ĉ(x0, r). Hence Ĉ(x0, r) contains all its D-limit points
and so Ĉ(x0, r) is D-closed. This proves the lemma.

In the next theorem, we prove an analogue of Baire’s Category theorem for
D-metric spaces.

Theorem 13. A complete D-metric space (X,D) satisfying the condition (i) for
every pair of points x, y ∈ X, there exists a sequence of D-closed balls {Bn} with
center at x and with δa(Bn) → 0 as n → ∞ ∀ a ∈ X, cannot be written as a
countable union of no-where dense sets.
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Proof. If possible, assume that

X =
⋃
n∈N

Xn =
⋃
n∈N

Xn

where each Xn is no-where dense i.e. Xn does not contain any non-empty D- open
set. Let U be any D- open set. Since X1 is no-where dense, X1 cannot contain U . So
there exists x1 ∈ U such that x1 /∈ X1. Since U −X1 is D- open and x1 ∈ U −X1,
by Lemma 3 there exists some real r1, r2, ..., rn all positive such that
x1 ∈ B̂(x1, r1) ∩ B̂(x1, r2) ∩ ... ∩ B̂(x1, rn)) = V1 (say) ⊂ U −X1. Without any

loss of generality, because of the condition (i), we can choose B̂(x1, r1) such that
δa(B̂(x1, r1)) < 1 ∀ a ∈ X. Then δa(V1) < 1 ∀ a ∈ X. Choose

U1 = B̂(x1, r1/2) ∩ ... ∩ B̂(x1, rn/2).

Then by Lemma 12

U1 ⊂ Ĉ(x1, r1/2) ∩ ... ∩ Ĉ(x1, rn/2) ⊂ V1 ⊂ U −X1

and δa(U1) ≤ δa(V1) < 1 ∀ a ∈ X. Again since U1 is D- open and X2 is no-where
dense, U1−X2 6= φ. So there exists x2 ∈ U1−X2. Proceeding as above we can find
a D-open set U2 such that

x2 ∈ U2 ⊂ U2 ⊂ U1 −X2

and δa(U2) < 1/2 ∀ a ∈ X.
Continuing in this way we obtain a sequence of D- closed sets {Un} such that

Un+1 ⊂ Un ∀ n ∈ N, δa(Un) < 1/n ∀ a ∈ X i.e. δa(Un)→ 0 as n→∞, ∀ a ∈ X.

By Theorem 8,

∞⋂
n=1

Un is non-empty and contains at most one point. Let

∞⋂
n=1

Un = {x0}.

Since Un ∩Xn = φ ∀ n ∈ N, x0 /∈
∞⋂
n=1

Xn which is a contradiction. This proves the

theorem.
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