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B-TANGENT DEVELOPABLE SURFACES OF BIHARMONIC
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ABSTRACT. In this paper, we study b—tangent developable surfaces of bihar-
monic b—slant helices in the special three-dimensional ¢—Ricci symmetric para-
Sasakian manifold P. Finally, we find out explicit parametric equations of b—tangent
developable surfaces of biharmonic b—slant helices in the special three-dimensional
¢—Ricci symmetric para-Sasakian manifold P.
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1. INTRODUCTION

Paper, sheet metal, and many other materials are approximately unstretchable.
The surfaces obtained by bending these materials can be flattened onto a plane
without stretching or tearing. More precisely, there exists a transformation that
maps the surface onto the plane, after which the length of any curve drawn on the
surface remains the same. Such surfaces, when sufficiently regular, are well known
to mathematicians as developable surfaces. While developable surfaces have been
widely used in engineering, design and manufacture, they have been less popular in
computer graphics, despite the fact that their isometric properties make them ideal
primitives for texture mapping, some kinds of surface modelling, and computer
animation.

In this paper, we study b—tangent developable surfaces of biharmonic b—slant he-
lices in the special three-dimensional ¢—Ricci symmetric para-Sasakian manifold P.
Finally, we find out explicit parametric equations of b—tangent developable surfaces
of biharmonic b—slant helices in the special three-dimensional ¢—Ricci symmetric
para-Sasakian manifold IP.
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2. BIHARMONIC b—SLANT HELICES IN THE SPECIAL THREE-DIMENSIONAL
¢—RICCI SYMMETRIC PARA-SASAKIAN MANIFOLD P

Let us consider biharmonicity of curves according to Bishop frame in the special
three-dimensional ¢—Ricci Symmetric para-Sasakian manifold P. Let {t,n,b} be
the Frenet frame field along . Then, the Frenet frame satisfies the following Frenet—
Serret equations:

Vtt = KN,
Vin = —kt+7b, (2.1)
th = —Tn,
where k = |T ()| = |V¢t| is the curvature of v and 7 its torsion and
gt,t) = 1, g(nn)=1, g(b,b) =1,

g(t,n) = g(t,b)=g(n,b)=0.

The Bishop frame or parallel transport frame is an alternative approach to defin-
ing a moving frame that is well defined even when the curve has vanishing second
derivative. The Bishop frame is expressed as

Vit = kimy + komo,
Vtml = *klt, (22)
Vtmg = —k:gt,
where
g(t,t) = 1, g(my,my) =1, g(my,my) =1,
g(t,my) = g(t,my)=g(mi,my)=0.

Here, we shall call the set {t,m;, m,} as Bishop trihedra, k; and ko as Bishop
curvatures and ¢ (s) = arctan Z—f, 7(s) = (' (s) and k(s) = \/k? + k3.

Theorem 1. Let v :I — P be a unit speed non-geodesic biharmonic b—slant
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heliz. Then, the parametric equations of v are

x(s) = sin€s+ A,

esin€s+A1
y(s) = e (sin€ — Ag) cos & cos [Ags + A] (2.3)
0
esinfs—i—.Al
+m (sin€ + Ap) cos E sin [Ags + A]) + As,
esinSs+A1
z(s) = mAO cos € cos [Ags + A
0
esinz‘)erAl
_W sin & cos € sin [Ags + A]) + As,

where A, A1, As, As are constants of integration and

k2 + k3 —COS2S)%
cos? & '

Ay = (

3. b—TANGENT DEVELOPABLE SURFACES OF BIHARMONIC b—SLANT HELICES IN
THE SPECIAL THREE-DIMENSIONAL ¢—RICCI SYMMETRIC PARA-SASAKIAN
MANIFOLD P

To separate a tangent developable according to Bishop frame from that of Frenet-
Serret frame, in the rest of the paper, we shall use notation for this surface as
b—tangent developable.

The purpose of this section is to study b—tangent developable surfaces of b—slant
helices in P.
The b—tangent developable of v is a ruled surface

R (s,u) =y (s) +uy (s). (3.1)

Theorem 2. Let R be b—tangent developable of a unit speed non-geodesic bihar-
monic b—slant heliz in P. Then, the parametric equations of b—tangent developable
are
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TR (s,u) = sin€s+usin€ + Aj,
esin£s+A1
, = —————(sin€ —tan&)cosEcostanEs + A 3.2
yrls) = S )cose cos| | (32)
esSinEs+A1

+m (sin€ + tan &) cos E sin [tan Es + A])

+uesin55+A1 (COS g COS [AOS =+ A] + COSg sin [ta:n 88 + A]) + A27

esin Es+Aq

zr (s,u) = ——————tan€cosEcosftanEs+ A
R (3,u) tan? € + sin? £ [ ]
esinger.Al

—m SingCOSgSin [tangs + A]

—yeSmEstAL o e ain [tan Es+ .A] + As,

where A, A1, As, As are constants of integration.

Proof. By the Bishop formula, we have the following equation
t = cos& cos [Aps + A] e; + cosEsin [Aps + A] ez — sin Ees. (3.3)
Using (3.3), we obtain

t = (sin&,e &AL (cos E cos[Ags + A] 4 cos Esin [Ags + A]),
—eSnEstAL 605 £ 5in [Ags + A)),

where
k3 + k3 —cos28)%
cos2 & '
Consequently, the parametric equations of R can be found from (3.1), (3.3).
This concludes the proof of Theorem.

Ag = (

We can prove the following interesting main result.

Theorem 3. . Let R be b—tangent developable of a unit speed non-geodesic bihar-
monic b—slant heliz in P. Then the equation of B—tangent developable is given
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R(s,u) = e_(Sings+USing+A1)[ﬂ (sin€ —tan &) cos & cos [tan Es + A]
tan? £ + sin? €
esin Es+ A
+m (Slng + tang) COSg Sin [tangs + A])
+uesM €A (cos € cos [Ags + A + cos E sin [tan Es + A]) + Ay
esiné‘s—l—Al

—i—m tan £ cos € cos [tan Es + A] (5.4)
esiné’er.Al

“m?E Tl E sin £ cos E sin [tan Es + A]

—ues 5T cos Esin [tan Es 4+ A] + Asle;

sin Es+.A1

_ef(sin€s+usin$+.»41)[ €

€ + sl E tan & cos & cos [tan Es + A|

esings—l—fh
——————~—sinfcos&sinftanEs + A
tan? € + sin® & [ ]
—ues M ETAL cos Esin [tan Es + A] + Asles
—[sin€s+usin€ + Ajles,
where A, A1, As, A are constants of integration.

Proof. We assume that ~ is a unit speed b—slant helix.
Substituting basis to (3.2), we have (3.4). Thus, the proof is completed.

Thus, we proved the following:

Theorem 4. Let R be b—tangent developable of a unit speed non-geodesic bihar-
monic b—slant helix in P. Then, normal of b—tangent developable of v is

ng = [uk;sinftan&s+ A] —ukgsin€ cos [tanEs + Alle;
+[—uk; cos [tan Es + A] — ukg sin E sin [tan s + Al]es
—uko cos es.

where A is constants of integration.

Proof. Assume that ng be the normal vector field on b—tangent developable defined
by
nrg = Rs A Ry.

This concludes the proof of theorem.
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