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THE OPERATIONAL TAU-ADOMIAN METHOD AND PADÉ
APPROXIMANTS FOR SOLVING GENERALIZED NON-LINEAR

VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

Ali Khani, Aydin Ostovar

Abstract. In this paper we use the operational Tau and Adomian meth-
ods with Padé approximants for solving the general Non-linear Volterra Integro-
Differential Equations (NVIDE). We will present our method based on the matrix
form of (NVIDE). The corresponding unknown coefficients of our method have been
determined by using computational aspects of matrices. To this end, the Padé ap-
proximants have been used to accurately determine the numerical solution. Finally,
accuracy of the method has been verified by presenting some numerical computa-
tions.
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1. Introduction

In 1981, Ortiz and Samara [22] proposed an operational technique for finding a nu-
merical solution of non-linear ordinary differential equations with some supplemen-
tary conditions based on the Tau method [9]. During the last last years considerable
works have been done both in development of the above mentioned technique, its
theoretical analysis and numerical applications. Various techniques have been de-
scribed in a series of papers [11,12,14,15,21] for the case of linear ordinary differential
eigenvalue problems. In [13,16,18-20] numerical solution of partial differential equa-
tions and their related eigenvalue problems have discussed. The object of this paper
is to present a simpler operational approach by using the Adomian decomposition
method for the general form of non-linear Volterra integro-differential equations of
the second kind with initial conditions. This method leads to an algorithm with
remarkable simplicity, while retaining the accuracy of results. The obtained series
solution is converted into Padé approximants to study the behavior of the solution.
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2. Non-linear Volterra integro-differential equations

Consider the non-linear Volterra integro-differential equation

y(m)(x) +G(x, y, y′, . . . , y(m−1))−
∫ x

0

F (x, t, y, y
′
, . . . , y(m))dt = f(x), x ∈ [0, a] (1)

whit the initial conditions

y(j)(0) = dj , j = 0, 1, · · · ,m− 1. (2)

Here we assume that f(x) is polynomial, otherwise it can be approximated by poly-
nomial to any degree of accuracy (by Taylor series or any other suitable method).
Moreover, we suppose that yn(x) to be a polynomial approximation of degree n for
y(x). Then one can write

f(x) =

n∑
j=0

fjx
j = f X

yn(x) =
n∑

j=0

ajx
j = anX (3)

where f = [f0, f1, . . . , fn, 0, 0, . . .], an = [a0, a1, . . . , an, 0, 0, . . .] and X = [1, x, x2, . . .]T

are the coefficients vectors of right-hand side of equation (1), unknown coefficients
vector and the basis vector respectively. Without loss of generality we have taken
all polynomials of degree n, because if f(x) and yn(x) are respectively of different
degrees nf and ny then we can set n = max{nf , ny}.

3. Converting NVE to a system of algebraic equations

The effect of differentiation on the coefficients an = [a0, · · · , an, 0, · · · ] of a polyno-
mial yn(x) = anX is the same as that of post-multiplication of an by the matrix η by

η =


0
1 0
0 2 0

...
0 0 3 0

. . .
. . .

.

Lemma 1. If yn(x) be a polynomial of the form

yn(x) =
n∑

i=0

aix
i =

∞∑
i=0

aix
i.
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Then
dr

dxr
yn(x) = anη

rX , r = 1, 2, 3, · · ·

where an = [a0, a1, . . . , an, 0, 0, . . .].

The proof follows immediately by induction.�
By using the Adomian decomposition method (See [13]), one can simplify the

non-linear terms of (1) as follows.

By setting Ĝ(x) = G(x, y(x), y
′
(x), . . . , y(m−1)(x)), we have

Ĝ(x) = G(x,

∞∑
j=0

ajx
j ,

∞∑
j=0

(j + 1)aj+1x
j , . . . ,

∞∑
j=0

(j +m− 1)!

j!
aj+m−1x

j)

=

∞∑
i=0

AG
i x

i

= AGX

(4)

where AG = [AG
0 , A

G
1 , . . .] with

AG
i =

1

i!
{ d

i

dxi
G(x,

∞∑
j=0

ajx
j , . . . ,

∞∑
j=0

(j +m− 1)!

j!
aj+m−1x

j)}x=0 =
Ĝ(i)(0)

i!

which is depend on a0, a1, . . . , ai+m−1 for i = 0, 1, . . ..
By using this method for the non-linear term under integral sign, we have

F̂ (x, t) = F (x, t, y, y
′
, . . . , y(m))

=

∞∑
i=0

∞∑
j=0

AF
ijx

itj
(5)

where

AF
ij =

1

i!j!
{ ∂i+j

∂xi∂tj
F (x, t, y, y

′
, . . . , y(m))}(x,y)=(0,0)

=
∂i+j F̂
∂xi∂tj

(0, 0)

i!j!
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which is depend on a0, a1, . . . , ar+m for i, j = 0, 1, 2, . . . , and r = max{i, j}.

Now if we replace y(x) by yn(x) =
n∑

i=0

aix
i in (5), then we have

∫ x

0
F (x, t, y, y

′
, . . . , y(m))dt =

∫ x

0

∞∑
i=0

∞∑
j=0

AF
ijx

itjdt

=

∞∑
i=0

∞∑
j=0

AF
ij

xi+j+1

j + 1

=
∞∑
i=1

ÂF
i x

i

= Â
F

X,

(6)

where Â
F

= [ÂF
0 , Â

F
1 , . . .] with ÂF

0 = 0 and ÂF
i =

i∑
j=1

AF
i−j,j−1
j

for i = 1, 2, · · · .

Therefore, the matrix form of (1) can be written as:

anη
mX + AGX− Â

F
X = f X

which yields

anη
m + AG − Â

F
= f , (7)

since X is a base vector. Now, the unknown coefficients can be determined by (2)
and (7). Note that we use (2) to write

aj =
dj
j!

j = 0, 1, · · · ,m− 1,

which determines the unknowns for the index j = 0, . . . ,m− 1.
Other coefficients are determined by solving (7), as:

am+j =
fj + ÂF

j −AG
j

(m+j)!
j!

, j = 0, 1, · · · , n−m.

The obtained numerical solution by above mentioned procedure can be improved by
the use of the Padé approximants.
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4. Padé approximants

A Padé approximant is the ratio of two polynomials constructed from the coefficients
of the Taylor series expansion of a function u(x). The [L/M ] Padé approximants to
a function y(x) are given by [16]. [

L

M

]
=

PL(x)

QM (x)
, (8)

where PL(x) is polynomial of degree at most L and QM (x) is a polynomial of degree
at most M . The formal power series

y(x) =
∞∑
i=1

aix
i, (9)

y(x)− PL(x)

QM (x)
= O(xL+M+1), (10)

determine the coefficients of PL(x) and QM (x) by the equation.
Since we can clearly multiply the numerator and denominator by a constant and

leave [L/M ] unchanged, we imposed the normalization condition

QM (x) = 1.0. (11)

Finally, we require that PL(x) and QM (x) have non common factors. If we write
the coefficient of PL(x) and QM (x) as

PL(x) = p0 + p1x+ · · ·+ pLx
L,

QM (x) = q0 + q1x+ · · ·+ qMx
M ,

(12)

Then by (11) and (12), we may multiply (8) byQM (x), which linearizes the coefficient
equations. We can write out (10) in more details as

aL+1 +aLq1 + · · ·+ aL−M qM = 0,
aL+2 +aL+1q1 + · · ·+ aL−M+2qM = 0,
...
aL+M +aL+M−1q1 + · · ·+ aLqM = 0,

(13)


a0 = p0 ,
a1 +a0q1 = p1 ,
...
aL +aL−1q1 + · · ·+ a0qL = pL ,

(14)
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To solve these equations, we start with Eq.(13), which is a set of linear equations
for all the unknown q,s. Once the q,s are known, then Eq.(14) gives an explicit
formula for the unknown p,s, which complete the solution. If Eqs.(13) and (14) are
nonsingular, then we can solve them directly and obtain Eq.(14), where Eq.(14)holds,
and if the lower index on a sum exceeds the upper, the sum is replaced by zero:

[
L

M

]
=

det



aL−M+1 aL−M+2 · · · aL+1

...
...

. . .
...

aL aL+1 · · · aL+M

L∑
j=M

aj−Mx
j

L∑
j=M−1

aj−M+1x
j · · ·

L∑
j=0

ajx
j



det


aL−M+1 aL−M+2 · · · aL+1

...
...

. . .
...

aL aL+1 · · · aL+M

xM xM−1 · · · 1


(15)

5. Estimation of error function

In this section, an error function is obtained for the approximate solution of Eqs.(1)
and (2). Let en(x) = y(x)−yn(x) be called the error function of Tau approximation
yn(x) to y(x) where y(x) is the exact solution. Hence yn(x) satisfies the following
problem:

y(m)
n (x) +G(x, yn, y

′
n, . . . , y

(m−1)
n ) −

∫ x

0
F (x, t, yn, y

′
n, . . . , y

(m)
n )dt

= f(x) +Hn(x), x ∈ [0, a].

(16)

with
y(j)n (0) = dj , j = 0, 1, · · · ,m− 1. (17)

The function Hn(x) is the perturbation term associated with yn(x). Hence

Hn(x) = ym
n (x) +G(x, yn, y

′
n, . . . , y

(m−1)
n )−

∫ x

0

F (x, t, yn, y
′
n, . . . , y

(m)
n )dt− f(x)

we proceed to find an approximation en,N (x) to the error functionen(x) in the same
way as we did before for the solution of problems in Eqs.(1) and (2). Subtracting
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(16) and (17) from (1) and (2) respectively and taking a term of expansions G
′
(x)

and F
′
(x, t) around yn(t), the error function en(x) satisfies the problem

e
(m)
n (x) +

m−1∑
i=0

e(i)n

∂G

∂y(i)
(x, yn, y

′
n, . . . , y

(m−1)
n )−

∫ x

0

m∑
i=0

∂F

∂y(i)
F (x, t, yn, y

′
n, . . . , y

(m)
n )dt = −Hn(x), x ∈ [0, a].

with
e(j)n (0) = 0, j = 0, 1, · · · ,m− 1.

6. Numerical examples

6.1. Population problem
The study of Volterra integral equations originated with the work of Volterra on

population dynamics. The equation actually used by Volterra, has the form

dN(t)

dt
= N(t){α− βN(t)−

∫ t

0
k(t− s)N(s)d(s)},

where the term −βN2(t) introduced to account for the competition between indi-
viduals in the population and tends to inhibit the growth of the population [10], and
k(t− s) is the survival function [1].

6.2. Problem of polymer rheology The equation

µu
′
(t) = u3(t)g(t) +

∫ t

0
k(t− s){u

3(t)

u2(s)
− u(s)}ds

models the elongation of filament of a certain polyethylene which is stretched on the
time interval −∞ < t ≤ 0, then released and allowed to undergo elastic recovery for
t > 0[10].

Both problems can be solved by the method of this paper directly.

7. Numerical results

The following examples are given to clarify accuracy of the presented method and
also shows the importance of the after-treatment method used to improve the ac-
curacy of the approximate solution in Tau-Padé method. Example[3,4] are selected
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from different references, so their numerical results obtained here can be compared
with the other numerical methods. The computations associated with the examples
were performed using Maple 13 on a Personal computer.

Example 1.

y
′′
(x)− Ln

(
y(x)y′(x)

)
+

∫ x

0

{2y′(t)
y(x)

(
sin(t)e−ty(t) + cos(t)

)
− y(t)

}
dt

= 2sin(x)− 2x+ 1,

y(0) = 1 , y′(0) = 1 , 0 ≤ x ≤ 1.

The exact solution is given by y(x) = ex. For the numerical results with n = 10, 15
see Table 1.

Example 2.
y(4)(x) + (1 + x)eLn(y′′(x)) +

∫ x

0

2y
′
(t)Ln(y′′(t))dt = e−x − x2 + 1, 0 ≤ x ≤ 1

y(0) = 1 , y′(0) = 0 , y′′(0) = 1 , y′′′(0) = −1.

The exact solution is given by y(x) = x + e−x. For the numerical results with
n = 10, 15 see Table 2.

Example 3. [3,4,17] y
′
(x) +

∫ x

0
cos(x− t)y2(t)dt = sin(2x),

y(0) = 1 , 0 ≤ x ≤ 1.

The exact solution is given by y(x) = cos(x). Table 3 shows the numerical results
and comparison with the other numerical solutions.

Example 4. [2,6,8]  y
′
(x) = 1 +

∫ x

0
y(t)y

′
(t)dt,

y(0) = 0 , 0 ≤ x ≤ 1.

The exact solution is given by y(x) =
√

2 tan(
x√
2

). For the numerical results with

n = 8 see Table 4.
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Remark 1. Note that in the following tables, the notations Exact, App, Err.Tau,
Est.Err. and Err.Tau-Pade[m,n], have been used for exact solution, approximate
solution obtained by our method and absolute error and estimate error of approximate
solution and absolute error of approximate solution improved by use of the Padé
approximants respectively.

x Exact App Err.Tau Est.Err. Err.Tau− Pade[5, 5]
n = 10
0.0 1.000000 1.000000 0 0 0
0.2 1.221403 1.221403 5.21752e− 16 5.13067e− 16 2.48910e− 18
0.4 1.491825 1.491825 1.08869e− 12 1.05076e− 12 6.24388e− 15
0.6 1.822119 1.822119 9.56518e− 11 9.08333e− 11 6.62761e− 13
0.8 2.225541 2.225541 2.30479e− 09 2.15196e− 09 1.92928e− 11
1.0 2.718282 2.718282 2.73127e− 08 2.50521e− 08 2.76650e− 10
x Exact App Err.Tau Est.Err. Err.Tau− Pade[8, 7]
n = 15
0.0 1.000000 1.000000 0 0 0
0.2 1.221403 1.221403 3.16954e− 25 3.13228e− 25 5.87483e− 29
0.4 1.491825 1.491825 2.10217e− 20 2.05277e− 20 4.65275e− 24
0.6 1.822119 1.822119 1.39757e− 17 1.34834e− 17 3.69789e− 21
0.8 2.225541 2.225541 1.41155e− 15 1.34530e− 15 4.47002e− 19
1.0 2.718282 2.718282 5.07711e− 14 4.77948e− 14 1.92645e− 17

Table 1. Numerical results of Example 1.

x Exact App Err.Tau Est.Err. Err.Tau− Pade[5, 5]
n = 10
0.0 1.000000 1.000000 0 0 0
0.2 1.018731 1.018731 5.04646e− 16 5.13067e− 16 3.03697e− 18
0.4 1.070320 1.070320 1.01678e− 12 1.05076e− 12 5.31185e− 15
0.6 1.148812 1.148812 8.65450e− 11 9.08883e− 11 3.93157e− 13
0.8 1.249329 1.249329 2.01685e− 09 2.15196e− 09 7.98071e− 12
1.0 1.367879 1.367879 2.31143e− 08 2.50521e− 08 7.98044e− 11
x Exact App Err.Tau Est.Err. Err.Tau− Pade[8, 7]
n = 15
0.0 1.000000 1.000000 0 0 0
0.2 1.018731 1.018731 3.09583e− 25 3.13228e− 25 4.03810e− 29
0.4 1.070320 1.070320 2.00552e− 20 2.05277e− 20 2.19830e− 24
0.6 1.148812 1.148812 1.30229e− 17 1.34834e− 17 1.20086e− 21
0.8 1.249329 1.249329 1.28469e− 15 1.34530e− 15 9.97743e− 20
1.0 1.367879 1.367879 4.51317e− 14 4.77948e− 14 2.95549e− 18

Table 2. Numerical results of Example 2.
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x Exact Tau(n = 15) Tau− Pade[8, 7] BPF Adomian
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.995004 0.995004 0.995004 0.995141 0.994951
0.2 0.980067 0.980067 0.980067 0.975784 0.980303
0.3 0.955336 0.955336 0.955336 0.960386 0.955685
0.4 0.921061 0.921061 0.921061 0.918443 0.921165
0.5 0.877583 0.877583 0.877583 0.862193 0.877048
0.6 0.825336 0.825336 0.825336 0.828963 0.822596
0.7 0.764842 0.764842 0.764842 0.752929 0.755333
0.8 0.696707 0.696707 0.696707 0.710418 0.667739
0.9 0.621610 0.621610 0.621610 0.617232 0.547241
1.0 0.540302 0.540302 0.540302 0.566917 0.364798

Table 3. Numerical results of Example 3.

x Exact Tau(n = 8) Err.Tau Err.T.− P.[4, 4] Err.WGM Err.HPM
0 0 0 0 0 0 0
0.0625 0.062541 0.062541 1.99e− 14 9.18e− 18 5.93e− 05 0
0.1250 0.125327 0.125327 1.02e− 11 4.73e− 15 2.65e− 05 0
0.1875 0.188606 0.188606 3.94e− 10 1.83e− 13 6.41e− 06 0
0.2500 0.252637 0.252637 5.28e− 09 2.47e− 12 6.29e− 05 0
0.3125 0.317688 0.317688 3.96e− 08 1.87e− 11 1.24e− 05 0
0.3750 0.384043 0.384043 2.06e− 07 9.84e− 11 5.65e− 05 1.00e− 05
0.4375 0.452013 0.452012 8.35e− 07 4.03e− 10 1.25e− 05 2.00e− 05
0.5000 0.521931 0.521928 2.81e− 06 1.38e− 09 6.59e− 05 5.00e− 05
0.5625 0.594169 0.594160 8.23e− 06 4.10e− 09 3.14e− 05 1.20e− 04
0.6250 0.669142 0.669120 2.16e− 05 1.10e− 08 5.81e− 05 2.40e− 04
0.6875 0.747320 0.747268 5.19e− 05 2.69e− 08 1.98e− 05 4.70e− 04
0.7500 0.829239 0.829123 1.16e− 04 6.15e− 08 6.10e− 05 8.60e− 04
0.8125 0.915520 0.915276 2.43e− 04 1.33e− 07 8.03e− 05 1.51e− 03
0.8750 1.006886 1.006400 4.87e− 04 2.73e− 07 1.38e− 05 2.56e− 03
0.9375 1.104193 1.103263 9.30e− 04 5.39e− 07 6.82e− 06 4.17e− 03
1.0000 1.208460 1.206746 1.71e− 03 1.03e− 06 3.98e− 05 6.61e− 03

Table 4. Numerical results of Example 4.

8. Conclusions

In this paper, we have solved a special class of NVIDEs which is important in prac-
tical problems, see the given practical problems in section 6. For solving this type of
problems, we have designed remarkably simple method which has high accuracy in
comparison with other existing methods and clarified the accuracy through solving
numerical examples (see Tables[3,4]). Some of the advantages of this method are as
follows:
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1. It solves NVIDEs without linearizing the nonlinear terms;
2. It gives an error estimator as a polynomial and gives more accurate solution

by increasing n.
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