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DECOMPOSITION OF αM-CONTINUITY VIA IDEALS
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Abstract. This paper will discuss about decomposition of α-M -continuity. For
this, we have defined two new types of continuity on ideal minimal spaces and have
obtained relationships with earlier continuities.
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1. Introduction

The generalization of topology and its study are not a new concept in literature.
Generalized Topology (GT) [1, 2, 3], is one of this generalization which has been
introduced by Csaszar through function’s approach. However Supratopology [7, 13]
and Weak Structure [1] ware introduced from topology. Minimal Structure is also
another generalization, this had been introduced by Maki et al [5, 6]. Further, the
authors like Popa and Noiri [15, 16][15,16], Min and Kim [8, 9, 10, 11, 12] and
Ozbakir et al [14] have studied it in detail.

In this paper we considered the minimal structure and the joint venture of ideal
[4] and minimal structure on a nonempty set. Here we have characterized the αM -
continuity with the help of ideals. For this, we define two types of set and continuities
and discuss their relationships. Finally we have reached to the decomposition of
αM -continuity.

2. Preliminaries

Definition 1. [5, 6] A subfamily mX of the power set P (X) of a nonempty set X is
called a minimal structure on X if ∅ ∈ mX and X ∈ mX . By (X,mX), we denote
a nonempty set X with a minimal structure mX on X.
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Simply we call (X,mX) a space with a minimal structure mX on X. Set M(x) =
{U ∈ mX : x ∈ U}.

Theorem 1. [5, 6] Let (X,mX) be a space with a minimal structure mX on X, for
a subset A of X, the closure of A and the interior of A are defined as the following:
(1) mint(A) = ∪{U : U ⊆ A, U ∈ mX}.
(2) mcl(A) = ∩{F : A ⊆ F, X − F ∈ mX}.

Theorem 2. [5, 6] Let (X,mX) be a space with a minimal structure mX on X and
A ⊆ X.
(1) X = mint(X) and ∅ = mcl(∅).
(2) mint(A) ⊆ A and A ⊆ mcl(A).
(3) If A ∈ mX , then mint(A) = A and if X − F ∈ mX , then mcl(F ) = F .
(4) If A ⊆ B, then mint(A) ⊆ mint(B) and mcl(A) ⊆ mcl(B).
(5) mint(mint(A)) = mint(A) and mcl(mcl(A)) = mcl(A).
(6) mcl(X −A) = X −mint(A) and mint(X −A) = X −mcl(A).

Definition 2. [15] Let (X,mX) and (Y,mY ) be two spaces with minimal structures
mX and mY , respectively. Then f : X → Y is said to be M -continuous if for x ∈ X
and V ∈M(f(x)), there is U ∈M(x) such that f(U) ⊆ V .

Definition 3. [9] Let (X,mX) be a minimal structure. A subset A of X is called
an m-semiopen if A ⊆ mcl(mint(A)).

The complement of an m-semiopen set is called an m-semiclosed set. The family
of all m-semiopen sets in X will be denoted by MSO(X).

Definition 4. [9] Let f : (X,mX)→ (Y,mY ) be a function between two spaces with
minimal structures mX and mY , respectively. Then f is said to be M -semicontinuous
if for each x and each m-open set V containing f(x), there exists an m-semiopen
set U containing x such that f(U) ⊆ V .

Theorem 3. [9] Let f : (X,mX) → (Y,mY ) be a function on two spaces with
minimal structures mX and mY , respectively. Then f is M -semicontinuous if and
only if f−1(V ) is m-semiopen for each m-open set V in Y .

Definition 5. [8] Let (X,mX) be a minimal structure. A subset A of X is called
an αm-open set if A ⊆ mint(mcl(mint(A))).

The complement of an αm-open set is called an αm-closed set. The family of all
αm-open sets in X will be denoted by αM(X).

Definition 6. [8] Let f : X → Y be a function between minimal structures (X,mX)
and (Y,mY ). Then f is said to be αM -continuous if for each x and each m-open set
V containing f(x), there exists an αm-open set U containing x such that f(U) ⊆ V .
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Theorem 4. [8] Let f : X → Y be a function on two minimal structures (X,mX)
and (Y,mY ). Then f is αM -continuous if and only if f−1(V ) is an αm-open set
for each m-open set V in Y .

Definition 7. [11] Let (X,mX) be a minimal structure. A subset A of X is called
an m-preopen set if A ⊆ mint(mcl(A)).

A set A is called an m-preclosed set if the complement of A is m-preopen sets
in X will be denoted by MPO(X).

Definition 8. [11] Let f : X → Y be a function between minimal structures (X,mX)
and (Y,mY ). Then f is said to be M -precontinuous if for each x and each m-open
set V containing f(x), there exists an m-preopen set U containing x such that
f(U) ⊆ V .

Theorem 5. [11] Let f : X → Y be a function on two minimal structures (X,mX)
and (Y,mY ). Then f is M -precontinuous if and only if f−1(V ) is an m-preopen
set for each m-open set V in Y .

Let I be an ideal [4] on X and mX be a minimal structure on X, then (X,mX , I)
is called an ideal minimal space [14].

Definition 9. [14] Let (X,mX , I) be an ideal minimal space and (.)∗ be a set opera-
tor from P (X) to P (X). For a subset A ⊆ X, A∗(I,mX) = {x ∈ X : U ∩A /∈ I, for
every U ∈ M(x)} is called minimal local function of A with respect to I and mX .
We will simply write A∗ for A∗(I,mX).

Definition 10. [14] Let (X,mX , I) be an ideal minimal space. Then the set operator
m-cl∗ is called a minimal ∗-closure and is defined as m-cl∗(A) = A∪A∗ for A ⊆ X.
We will denoted by m∗

X(I,mX) the minimal structure generated by m-cl∗, that is,
m∗

X(I,mX) = {U ⊆ X : m-cl∗(X − U) = X − U}.

m∗
X(I,mX) is called ∗-minimal structure which is finer than mX . The elements

of m∗
X(I,mX) are called minimal ∗-open(briefly, m∗-open) and the complement of

an m∗-open set is called minimal ∗-closed(briefly, m∗-closed). Throughout the paper
we simply m∗

X for m∗
X(I,mX).

Definition 11. [14] A subset A of an ideal minimal space (X,mX , I) is m∗-dense
in itself(resp. m∗-perfect) if A ⊆ A∗(resp. A∗ = A).

Remark 1. [14] A subset A of an ideal minimal space (X,mX , I) is m∗-closed if
and only if A∗ ⊆ A.
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3. Continuity on ideal minimal spaces

Definition 12. Let (X,mX , I) be an ideal minimal space. A subset A of X is called
an m-I-open set if A ⊆ mint((A)∗).

The family of all m-I-open sets in X will be denoted by MIO(X).

Theorem 6. Let (X,mX , I) be an ideal minimal space. Any union of m-I-open
sets is m-I-open.

Proof. LetAi be anm-I-open set for i ∈ J . ThenAi ⊆ mint((Ai)∗) ⊆ mint((∪Ai)∗).
This implies ∪iAi ⊆ mint((∪Ai)∗). Hence ∪iAi ∈MIO(X).

It is obvious from above discussion, MIO(X) forms a GT [1, 2, 3].

Theorem 7. Let (X,mX , I) be an ideal minimal space and A ⊆ X. If A ∈MIO(X)
then A ∈MPO(X).

Proof. It is obvious

Hence we have MIO(X) ⊆ MPO(X), but reverse inclusion need not hold in
general.

Remark 2. Let X = {a, b, c, d}, mX = {∅, X, {a}, {b}, {a, b, c}, {b, c}, {a, c}}, I =
{∅, {a}}. For A = {a, c}, A ⊂ mint(mcl(A)), but A∗ = {c, d}. Therefore A /∈
MIO(X).

Theorem 8. Let (X,mX , I) be an ideal minimal space and A ⊆ X. If A ∈
MIO(X), then A is m∗-dense in itself.

Definition 13. Let f : X → Y be a function between ideal minimal structures
(X,mX , I) and (Y,mY , J). Then f is said to be m-I-continuous if for each x and
each m-open set V containing f(x), there exists an m-I- open set U containing x
such that f(U) ⊆ V .

Theorem 9. Let f : X → Y be a function between two ideal minimal spaces
(X,mX , I) and (Y,mY , J). Then f is m-I-continuous if and only if f−1(V ) is
an m-I- open set for each m-open set V in Y .

Proof. Let f be m-I-continuous. Then for any m-open set V in Y and for each
x ∈ f−1(V ), there exists an m-I-open set U containing x such that f(U) ⊆ V . This
implies x ∈ U ⊆ f−1(V ) for each x ∈ f−1(V ). Since any union of m-I-open sets is
m-I-open, f−1(V ) is m-I-open.
Converse part: Let x ∈ X and for each m-open set V containing f(x), x ∈ f−1(V ) ⊂
mint((f−1(V ))∗). So there exists an m-I-open set U containing x such that x ∈
U ⊆ f−1(V ), i.e., f(U) ⊆ V . Hence f is m-I-continuous.
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Corollary 10. Let f : X → Y be a function between two ideal minimal spaces
(X,mX , I) and (Y,mY , J). If f is m-I continuous then f is M -precontinuous.

From Remark 2, the converse of this corollary need not hold in general.

Theorem 11. Let f : X → Y be a m-I-continuous function between two ideal
minimal spaces (X,mX , I) and (Y,mY , J). Then f−1(V ) is a m∗-dense in itself, for
each m-open set V in Y .

Proof. Proof is obvious from Theorem 8.

Definition 14. Let (X,mX , I) be an ideal minimal space. A subset A of X is called
an M -I-open set if A ⊆ (mint(A))∗.

The family of all M -I-open sets in X will be denoted by MMIO(X).

Theorem 12. Let (X,mX , I) be an ideal minimal space. Any union of M -I-open
sets is M -I-open.

Proof. LetAi be anM -I-open set for i ∈ J . ThenAi ⊆ (mint(Ai))∗ ⊆ (mint(∪Ai))∗.
This implies ∪iAi ⊆ (mint(∪Ai))∗. Hence ∪iAi ∈MMIO(X).

From above, it is obvious that MMIO(X) forms a GT.

Theorem 13. Let (X,mX , I) be an ideal minimal space and A ⊆ X. If A ∈
MMIO(X) then A ∈MSO(X).

Proof. It is obvious.

Therefore we have MMIO(X) ⊆ MSO(X). But following example shows that
the converse inclusion need not hold in general.

Remark 3. Let X = {a, b, c, d}, mX = {∅, X, {a}, {b}, {a, b, c}, {b, c}, {a, c}}, I =
{∅, {a}}. For A = {a, c}, A ⊂ mcl(mint(A)), but (mint(A))∗ = {c, d}. Therefore
A /∈MMIO(X).

Theorem 14. Let (X,mX , I) be an ideal minimal space and A ⊆ X. If A ∈
MMIO(X), then A is m∗-dense in itself.

Hence we have obtained following diagram:

m-I-open =⇒ m∗-dense in itself ⇐= M -I-open

Definition 15. Let f : X → Y be a function between ideal minimal spaces (X,mX , I)
and (Y,mY , J). Then f is said to be M -I continuous if for each x and each m-
open set V containing f(x), there exists an M -I open set U containing x such that
f(U) ⊆ V .
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Theorem 15. Let f : X → Y be a function between two ideal minimal spaces
(X,mX , I) and (Y,mY , J). Then f is M -I continuous if and only if f−1(V ) is an
M -I open set for each m-open set V in Y .

Proof. Let f be M -I-continuous. Then for any m-open set V in Y and for each
x ∈ f−1(V ), there exists an M -I-open set U containing x such that f(U) ⊆ V . This
implies x ∈ U ⊆ f−1(V ) for each x ∈ f−1(V ). Since any union of M -I-open sets is
M -I-open, f−1(V ) is M -I-open.
Converse part: Let x ∈ X and for each m-open set V containing f(x), x ∈ f−1(V ) ⊂
(mint(f−1(V )))∗. So there exists an M -I-open set U containing x such that x ∈
U ⊆ f−1(V ), i.e., f(U) ⊆ V . Hence f is M -I-continuous.

Corollary 16. Let f : X → Y be a function between two ideal minimal spaces
(X,mX , I) and (Y,mY , J). If f is M -I-continuous then f is M -semicontinuous.

Proof. From Remark 3, the converse of this corollary need not hold in general.

Theorem 17. Let f : X → Y be a M -I-continuous function between two ideal
minimal spaces (X,mX , I) and (Y,mY , J). If f is M -I continuous then f−1(V ) is
m∗-dense in itself, for each m-open set V in Y .

Theorem 18. Let f : (X,mX)→ (Y,mY ) be a αM -continuous function. Then
(1) f is M -semicontinuous; and
(2) f is M -precontinuous.

For reverse part of the this theorem, we get following:

Theorem 19. Let f : (X,mX)→ (Y,mY ) be a M -semicontinuous and M -precontinuous
function. Then f is αM -continuous.

Following corollary is a decomposition of αM -continuity.

Corollary 20. Let f : (X,mX)→ (Y,mY ) be a function. Then f is αM -continuous
if and only if f is M -semicontinuous and M -precontinuous.

Theorem 21. Let f : X → Y be a function between ideal minimal spaces (X,mX , I)
and (Y,mY , J). If f is M -I-continuous and M -precontinuous, then f is αM -
continuous.

Reverse part of this theorem need not hold in general, because the concept of
M -I-open sets and αm-open are different.

Theorem 22. Let f : X → Y be a function between ideal minimal spaces (X,mX , I)
and (Y,mY , J). If f is M -I-continuous and m-I-continuous, then f is αM -continuous.
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