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DECOMPOSITION OF aM-CONTINUITY VIA IDEALS
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ABSTRACT. This paper will discuss about decomposition of a-M-continuity. For
this, we have defined two new types of continuity on ideal minimal spaces and have
obtained relationships with earlier continuities.
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1. INTRODUCTION

The generalization of topology and its study are not a new concept in literature.
Generalized Topology (GT) [1, 2, 3], is one of this generalization which has been
introduced by Csaszar through function’s approach. However Supratopology [7, 13]
and Weak Structure [1] ware introduced from topology. Minimal Structure is also
another generalization, this had been introduced by Maki et al [5, 6]. Further, the
authors like Popa and Noiri [15, 16][15,16], Min and Kim [8, 9, 10, 11, 12] and
Ozbakir et al [14] have studied it in detail.

In this paper we considered the minimal structure and the joint venture of ideal
[4] and minimal structure on a nonempty set. Here we have characterized the aM-
continuity with the help of ideals. For this, we define two types of set and continuities
and discuss their relationships. Finally we have reached to the decomposition of
aM-continuity.

2. PRELIMINARIES

Definition 1. /5, 6/ A subfamily mx of the power set P(X) of a nonempty set X is
called a minimal structure on X if ) € mx and X € mx. By (X, my), we denote
a nonempty set X with a minimal structure mx on X.
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Simply we call (X, my) a space with a minimal structure mx on X. Set M(x) =
{Uemx: zeU}.

Theorem 1. [5, 6/ Let (X, mx) be a space with a minimal structure mx on X, for
a subset A of X, the closure of A and the interior of A are defined as the following:
(1) mint(A) =U{U: U C A, U € mx}.

(2) mcl(A)=n{F: ACF, X —-F e€mx}.

Theorem 2. [5, 6] Let (X, mx) be a space with a minimal structure mx on X and
ACX.

(1) X = mint(X) and § = mcl(0).

(2) mint(A) C A and A C mcl(A).

(3) If A € mx, then mint(A) = A and if X — F € myx, then mcl(F) = F.

(4) If A C B, then mint(A) C mint(B) and mcl(A) C mcl(B).

(5) mint(mint(A)) = mint(A) and mcl(mcl(A)) = mcl(A).

(6) mcl(X — A) = X — mint(A) and mint(X — A) = X —mcl(A).

Definition 2. [15] Let (X, mx) and (Y, my) be two spaces with minimal structures
mx and my, respectively. Then f: X — Y is said to be M -continuous if for x € X
and V€ M(f(x)), there is U € M(z) such that f(U) C V.

Definition 3. [9] Let (X, mx) be a minimal structure. A subset A of X is called
an m-semiopen if A C mel(mint(A)).

The complement of an m-semiopen set is called an m-semiclosed set. The family
of all m-semiopen sets in X will be denoted by MSO(X).

Definition 4. [9] Let f : (X, mx) — (Y, my) be a function between two spaces with

minimal structures mx and my, respectively. Then f is said to be M -semicontinuous
if for each x and each m-open set V' containing f(x), there exists an m-semiopen

set U containing x such that f(U) C V.

Theorem 3. [9] Let f : (X,mx) — (Y,my) be a function on two spaces with
minimal structures mx and my, respectively. Then f is M-semicontinuous if and
only if f=Y(V) is m-semiopen for each m-open set V in'Y.

Definition 5. [8] Let (X, mx) be a minimal structure. A subset A of X is called
an am-open set if A C mint(mcl(mint(A))).

The complement of an am-open set is called an am-closed set. The family of all
am-open sets in X will be denoted by aM(X).

Definition 6. [8] Let f : X — Y be a function between minimal structures (X, mx)
and (Y, my). Then f is said to be a M -continuous if for each x and each m-open set
V' containing f(x), there exists an am-open set U containing x such that f(U) C V.
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Theorem 4. [8] Let f : X — Y be a function on two minimal structures (X, mx)
and (Y,my). Then f is aM-continuous if and only if f~1(V) is an am-open set
for each m-open set V in'Y.

Definition 7. [11] Let (X, mx) be a minimal structure. A subset A of X is called
an m-preopen set if A C mint(mcl(A)).

A set A is called an m-preclosed set if the complement of A is m-preopen sets
in X will be denoted by M PO(X).

Definition 8. [11] Let f : X — Y be a function between minimal structures (X, mx)
and (Y,my). Then f is said to be M -precontinuous if for each x and each m-open
set V' containing f(x), there exists an m-preopen set U containing = such that

fUu)cv.

Theorem 5. [11] Let f: X — Y be a function on two minimal structures (X, mx)
and (Y,my). Then f is M-precontinuous if and only if f=*(V) is an m-preopen
set for each m-open set'V in'Y.

Let I be an ideal [4] on X and mx be a minimal structure on X, then (X, mx,I)
is called an ideal minimal space [14].

Definition 9. [14] Let (X, mx,I) be an ideal minimal space and (.). be a set opera-
tor from P(X) to P(X). For a subset AC X, A,(I,mx)={x€ X: UNA¢ I, for
every U € M(x)} is called minimal local function of A with respect to I and mx.
We will simply write A, for A (I, mx).

Definition 10. [14] Let (X, mx, I) be an ideal minimal space. Then the set operator
m-cl* is called a minimal *-closure and is defined as m-cl*(A) = AU A, for AC X.
We will denoted by m% (I, mx) the minimal structure generated by m-cl*, that is,
mi(I[,mx)={UCX: m-c"(X-U)=X-U}.

m’ (I, mx) is called *-minimal structure which is finer than my. The elements
of m% (I, mx) are called minimal *-open(briefly, m*-open) and the complement of
an m*-open set is called minimal *-closed (briefly, m*-closed). Throughout the paper
we simply m’% for m% (I, mx).

Definition 11. [1/] A subset A of an ideal minimal space (X, mx,I) is m*-dense
in itself(resp. m*-perfect) if A C A, (resp. Ay, = A).

Remark 1. [1/] A subset A of an ideal minimal space (X, mx,I) is m*-closed if
and only if A, C A.
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3. CONTINUITY ON IDEAL MINIMAL SPACES

Definition 12. Let (X, mx,I) be an ideal minimal space. A subset A of X is called
an m-I-open set if A C mint((A)).

The family of all m-I-open sets in X will be denoted by MIO(X).

Theorem 6. Let (X, mx,I) be an ideal minimal space. Any union of m-I-open
sets is m-I-open.

Proof. Let A; be an m-I-openset fori € J. Then A; € mint((A4;)«) C mint((UA;)«).
This implies U; A; € mint((UA;).). Hence U;A; € MTIO(X).

It is obvious from above discussion, MTO(X) forms a GT [1, 2, 3].

Theorem 7. Let (X, mx, I) be an ideal minimal space and A C X. If A € MIO(X)
then A € MPO(X).

Proof. 1t is obvious

Hence we have MIO(X) C MPO(X), but reverse inclusion need not hold in
general.

Remark 2. Let X = {a,b,c,d}, mx = {0, X,{a}, {b},{a,b,c},{b,c},{a,c}}, T =
{0,{a}}. For A = {a,c}, A C mint(mcl(A)), but A. = {c,d}. Therefore A ¢
MIO(X).

Theorem 8. Let (X,mx,I) be an ideal minimal space and A C X. If A €
MIO(X), then A is m*-dense in itself.

Definition 13. Let f : X — Y be a function between ideal minimal structures
(X,mx,I) and (Y,my,J). Then f is said to be m-I-continuous if for each x and
each m-open set V' containing f(x), there exists an m-I- open set U containing x

such that f(U) C V.

Theorem 9. Let f : X — Y be a function between two ideal minimal spaces
(X,mx,I) and (Y,my,J). Then f is m-I-continuous if and only if f~*(V) is
an m-I- open set for each m-open set V inY .

Proof. Let f be m-I-continuous. Then for any m-open set V' in Y and for each
x € f~Y(V), there exists an m-I-open set U containing x such that f(U) C V. This
implies z € U C f~%(V) for each x € f~!(V). Since any union of m-I-open sets is
m-I-open, f~1(V) is m-I-open.

Converse part: Let 2 € X and for each m-open set V containing f(x), z € f~1(V) C
mint((f71(V)).). So there exists an m-I-open set U containing z such that x €
UC f~YV),ie., f(U) CV. Hence f is m-I-continuous.
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Corollary 10. Let f : X — Y be a function between two ideal minimal spaces
(X,mx,I) and (Y,my,J). If f is m-I continuous then f is M-precontinuous.

From Remark 2, the converse of this corollary need not hold in general.

Theorem 11. Let f : X — Y be a m-I-continuous function between two ideal
minimal spaces (X, mx,I) and (Y,my,J). Then f~1(V) is a m*-dense in itself, for
each m-open set V in'Y.

Proof. Proof is obvious from Theorem 8.

Definition 14. Let (X, mx,I) be an ideal minimal space. A subset A of X is called
an M-I-open set if A C (mint(A))s.

The family of all M-I-open sets in X will be denoted by MMIO(X).

Theorem 12. Let (X, mx,I) be an ideal minimal space. Any union of M-I-open
sets is M -I-open.

Proof. Let A; be an M-I-open set fori € J. Then A; C (mint(A;))« C (mint(UA;))«.
This implies U; A; C (mint(UA;))«. Hence U;A; € MMIO(X).

From above, it is obvious that M MIO(X) forms a GT.

Theorem 13. Let (X,mx,I) be an ideal minimal space and A C X. If A €
MMIO(X) then A€ MSO(X).

Proof. 1t is obvious.

Therefore we have MMIO(X) C MSO(X). But following example shows that
the converse inclusion need not hold in general.

Remark 3. Let X = {a,b,c,d}, mx = {0, X,{a},{b},{a,b,c},{b,c}, {a,c}}, I =
{0,{a}}. For A ={a,c}, A C mcl(mint(A)), but (mint(A)). = {c,d}. Therefore
Ad MMIO(X).

Theorem 14. Let (X,mx,I) be an ideal minimal space and A C X. If A €
MMIO(X), then A is m*-dense in itself.

Hence we have obtained following diagram:
m-I-open = m*-dense in itself <= M-I-open

Definition 15. Let f : X — Y be a function between ideal minimal spaces (X, mx,I)
and (Y,my,J). Then f is said to be M-I continuous if for each x and each m-
open set 'V containing f(x), there exists an M-I open set U containing x such that
f(U)CV.
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Theorem 15. Let f : X — Y be a function between two ideal minimal spaces
(X,mx,I) and (Y,my,J). Then f is M-I continuous if and only if f~1(V) is an
M-I open set for each m-open set V in'Y.

Proof. Let f be M-I-continuous. Then for any m-open set V in Y and for each
x € f~Y(V), there exists an M-I-open set U containing = such that f(U) C V. This
implies z € U C f~1(V) for each x € f~1(V). Since any union of M-I-open sets is
M-I-open, f~Y(V) is M-I-open.

Converse part: Let # € X and for each m-open set V containing f(z), z € f~4(V) C
(mint(f~1(V)))s. So there exists an M-I-open set U containing = such that x €
UCf V), ie., f(U)CV. Hence f is M-I-continuous.

Corollary 16. Let f : X — Y be a function between two ideal minimal spaces
(X,mx,I) and (Y,my,J). If f is M-I-continuous then f is M-semicontinuous.

Proof. From Remark 3, the converse of this corollary need not hold in general.

Theorem 17. Let f : X — Y be a M-I-continuous function between two ideal
minimal spaces (X, mx,I) and (Y,my,J). If f is M-I continuous then f~1(V) is
m™*-dense in itself, for each m-open set V in Y.

Theorem 18. Let f: (X, mx) — (Y,my) be a aM -continuous function. Then
(1) f is M-semicontinuous; and
(2) f is M-precontinuous.

For reverse part of the this theorem, we get following:

Theorem 19. Let f : (X, mx) — (Y, my) be a M -semicontinuous and M -precontinuous
function. Then f is aM -continuous.

Following corollary is a decomposition of aM-continuity.

Corollary 20. Let f : (X,mx) — (Y, my) be a function. Then f is aM -continuous
if and only if f is M-semicontinuous and M -precontinuous.

Theorem 21. Let f : X — Y be a function between ideal minimal spaces (X, mx,I)
and (Y,my,J). If f is M-I-continuous and M -precontinuous, then f is aM-
continuous.

Reverse part of this theorem need not hold in general, because the concept of
M-I-open sets and am-open are different.

Theorem 22. Let f : X — Y be a function between ideal minimal spaces (X, mx,I)
and (Y,my,J). If f is M -I-continuous and m-I-continuous, then f is aM -continuous.
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