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1. Introduction

Let A denote the class of functions of the form :

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1}. We also
denote by K the class of function f(z) ∈ A that are convex in U .

Let P (λ, b) denote the subclass of A consisting of functions f(z) which satisfy :

Re

{
1 +

1

b

(
zf

′
(z) + λz2f

′′
(z)

(1− λ)f(z) + λzf ′(z)
− 1

)}
> 0

(z ∈ U ; b ∈ C∗ = C\{0}; 0 ≤ λ ≤ 1) (1.2)

or which satisfy the following inequality :∣∣∣∣∣∣∣
zf

′
(z)+λz2f

′′
(z)

(1−λ)f(z)+λzf ′ (z) − 1

zf ′ (z)+λz2f ′′ (z)

(1−λ)f(z)+λzf ′ (z) − 1 + 2b

∣∣∣∣∣∣∣ < 1 . (1.3)

Also, a function f(z) ∈ A is said to be in the class R(λ, b) if it satisfies :

Re

{
1 +

1

b

(
f

′
(z) + λzf

′′
(z)− 1

)}
> 0
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(z ∈ U ; b ∈ C∗; 0 ≤ λ ≤ 1) (1.4)

or which satisfy the following inequality :∣∣∣∣∣ f
′
(z) + λzf

′′
(z)− 1

f ′(z) + λzf ′′(z)− 1 + 2b

∣∣∣∣∣ < 1 . (1.5)

We note that :

(i) P (0, b) = S(b) =

{
f ∈ A : Re

[
1 +

1

b

(
zf

′
(z)

f(z)
− 1

)]
> 0, z ∈ U, b ∈ C∗

}
,

(1.6)
where S(b), is the class of starlike functions of complex order, studied by Nasr and
Aouf [6] and Owa [7];

(ii) P (1, b) = C(b) =

{
f ∈ A : Re

(
1 +

1

b

zf
′′
(z)

f ′(z)

)
> 0, z ∈ U, b ∈ C∗

}
,

(1.7)
where C(b), is the class of convex functions of complex order, studied by Nasr and
Aouf [5] and Owa [7];

(iii) R(0, b) = R(b) =

{
f ∈ A : Re

[
1 +

1

b
(f

′
(z)− 1)

]
> 0, z ∈ U, b ∈ C∗

}
,

(1.8)
where R(b) is the class of close-to-convex functions of complex order, studied by
Halim [3] and Owa [7].

Definition 1. (Hadamard Product or Convolution). Given two functions f
and g in the class A, where f(z) is given by (1.1) and g(z) is given by

g(z) = z +

∞∑
n=2

bnz
n . (1.9)

The Hadamard product (or convolution) (f ∗ g)(z) is defined (as usual) by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n = (g ∗ f)(z) (z ∈ U) .

Definition 2. (Subordination Principal). For two functions f and g, analytic
in U , we say that the function f(z) is subordinate to g(z) in U , and write f(z) ≺
g(z) (z ∈ U), if there exists a Schwarz function w(z), which (by definition) is analytic
in U with w(0) = 0 and |w(z)| < 1, such that f(z) = g(w(z)) (z ∈ U). Indeed it is
known that f(z) ≺ g(z)⇒ f(0) = g(0) and f(U) ⊂ g(U) .
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Furthermore, if the function g is univalent in U , then we have the following
equivalence [4, p. 4] :

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U) .

Definition 3. (Subordinating Factor Sequence). A sequence {bn}∞n=1 of com-
plex numbers is said to be a subordinating factor sequence if, whenever f(z) is of the
form (1.1) is analytic, univalent and convex in U , we have the subordination given
by

∞∑
n=1

anbnz
n ≺ f(z) (z ∈ U ; a1 = 1) . (1.10)

Lemma 1. [10]. The sequence {bn}∞n=1 is a subordinating factor sequence if and
only if

Re

{
1 + 2

∞∑
n=1

bnz
n

}
> 0 (z ∈ U) .

In [1], Altintas and Qzkan studied the classes P (λ, b) and R(λ, b) when f(z) =

z −
∞∑
n=2

anz
n (an ≥ 0) and obtained the following lemmas :

Lemma 2. [1]. If f(z) = z −
∞∑
n=2

anz
n (an ≥ 0) ∈ P (λ, b), then we have

∞∑
n=2

[1 + λ(n− 1)] (n+ |b| − 1)an ≤
|b|2

Re(b)
.

Lemma 3. [1]. If f(z) = z −
∞∑
n=2

anz
n (an ≥ 0) ∈ R(λ, b), then we have

∞∑
n=2

n [1 + λ(n− 1)] an ≤
|b|2

Re(b)
.

In [8], Ozkan used Lemma 2 and Lemma 3 to obtain subordination results involv-
ing the Hadamard product of the above classes. All the results obtained by Ozkan
[8, Theorem 2.1 and Theorem 2.8] are not correct because Lemma 1 and Lemma
2 are proved by Altinatas and Ozkan [1] when f(z) has negative coefficients, i. e.,

f(z) = z −
∞∑
n=2

anz
n (an ≥ 0).

Now, we prove the following lemmas which give a sufficient conditions for func-
tions belonging to the classes P (λ, b) and R(λ, b).
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Lemma 4. Let the function f(z) which is defined by (1.1) satisfies the following
condition :

∞∑
n=2

[1 + λ(n− 1)] [(n− 1) + |2b+ n− 1|] |an| ≤ 2 |b| (λ ≥ 0; b ∈ C∗), (1.11)

then f(z) ∈ P (λ, b).

Proof. Suppose that the inequality (1.11) holds. Then we have for z ∈ U ,∣∣∣∣∣ zf
′
(z) + λz2f

′′
(z)

(1− λ)f(z) + λzf ′(z)
− 1

∣∣∣∣∣−
∣∣∣∣∣ zf

′
(z) + λz2f

′′
(z)

(1− λ)f(z) + λzf ′(z)
+ 2b− 1

∣∣∣∣∣
=

∣∣∣[zf ′
(z) + λz2f

′′
(z)
]
−
[
(1− λ)f(z) + λzf

′
(z)
]∣∣∣−∣∣∣[zf ′

(z) + λz2f
′′
(z)
]

+ (2b− 1)
[
(1− λ)f(z) + λzf

′
(z)
]∣∣∣

=

∣∣∣∣∣
∞∑
n=2

(n− 1) [1 + λ(n− 1)] anz
n

∣∣∣∣∣−
∣∣∣∣∣2bz +

∞∑
n=2

[1 + λ(n− 1)] (2b+ n− 1)anz
n

∣∣∣∣∣
≤ |z|

{ ∞∑
n=2

(n− 1) [1 + λ(n− 1)] |an| |z|n−1 −{
2 |b| −

∞∑
n=2

[1 + λ(n− 1)] |2b+ n− 1| |an| |z|n−1
}

≤
∞∑
n=2

[1 + λ(n− 1)] [(n− 1) + |2b+ n− 1|]

}
|an| − 2 |b| ≤ 0 ,

which shows that f(z) belongs to the class P (λ, b).

Lemma 5. Let the function f(z) which is defined by (1.1) satisfies the following
condition :

∞∑
n=2

n [1 + λ(n− 1)] |an| ≤ |b| , (1.12)

then f(z) ∈ R(λ, b).

Proof. Suppose that the inequality (1.12) holds. Then we have for z ∈ U ,∣∣∣f ′
(z) + λzf

′′
(z)− 1

∣∣∣− ∣∣∣f ′
(z) + λzf

′′
(z) + 2b− 1

∣∣∣
=

∣∣∣∣∣
∞∑
n=2

n [1 + λ(n− 1)] anz
n−1

∣∣∣∣∣−
∣∣∣∣∣2b+

∞∑
n=2

n [1 + λ(n− 1)] anz
n−1

∣∣∣∣∣
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≤
∞∑
n=2

n [1 + λ(n− 1)] |an| |z|n−1 − {2 |b| −
∞∑
n=2

n [1 + λ(n− 1)] |an| |z|n−1
}

≤ 2

{ ∞∑
n=2

n [1 + λ(n− 1)] |an| − |b|

}
≤ 0 ,

which shows that f(z) belongs to the class R(λ, b).
Let P ∗(λ, b) and R∗(λ, b) denote the classes of functions f(z) ∈ A whose coeffi-

cients satisfy the conditions (1.11) and (1.12), respectively. We note that P ∗(λ, b) ⊆
P (λ, b) and R∗(λ, b) ⊆ R(λ, b).

2. Main Results

Employing the technique used earlier by Attiya [2] and Srivastava and Attiya [9],
we prove:

Theorem 6. Let f(z) ∈ P ∗(λ, b). Then, for the function g ∈ K(
(λ+ 1) [1 + |2b+ 1|]

2 {2|b|+ (λ+ 1)[1 + |2b+ 1|]}

)
(f ∗ g)(z) ≺ g(z) (z ∈ U) (2.1)

and

Re(f(z)) > −2 {2|b|+ (λ+ 1)[1 + |2b+ 1|]}
(λ+ 1) [1 + |2b+ 1|]

(z ∈ U) . (2.2)

The constant factor
(λ+ 1) [1 + |2b+ 1|]

2 {2|b|+ (λ+ 1)[1 + |2b+ 1|]}
in the subordination result (2.1)

cannot be replaced by a larger one.

Proof. Let f(z) ∈ P ∗(λ, n) and let g(z) = z +
∞∑
n=2

cnz
n ∈ K. Then we have

(λ+ 1) [1 + |2b+ 1|]
2 {2|b|+ (λ+ 1)[1 + |2b+ 1|]}

(f ∗ g)(z)

=
(λ+ 1) [1 + |2b+ 1|]

2 {2|b|+ (λ+ 1)[1 + |2b+ 1|]}

(
z +

∞∑
n=2

ancnz
n

)
. (2.3)

Thus, by Definition 3, the subordination result (2.1) will hold true if the sequence{
(λ+ 1) [1 + |2b+ 1|]

2 {2|b|+ (λ+ 1)[1 + |2b+ 1|]}
an

}∞
n=1

(2.4)
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is a subordinating factor sequence with a1 = 1. In view of Lemma 1, this is equivalent
to the following inequality :

Re

{
1 +

(λ+ 1) [1 + |2b+ 1|]
2 {2|b|+ (λ+ 1)[1 + |2b+ 1|]}

∞∑
n=1

anz
n

}
> 0 (z ∈ U) . (2.5)

Now, since
Ψ(n) = [1 + λ(n− 1)] [(n− 1) + |2b+ n− 1|]

is an increasing function of n (n ≥ 2), we have

Re

{
1 +

(λ+ 1) [1 + |2b+ 1|]
{2|b|+ (λ+ 1)[1 + |2b+ 1|]}

∞∑
n=1

anz
n

}

= Re

{
1 +

(λ+ 1) [1 + |2b+ 1|]
{2|b|+ (λ+ 1)[1 + |2b+ 1|]}

z +

1

{2|b|+ (λ+ 1)[1 + |2b+ 1|]}

∞∑
n=2

(λ+ 1) [1 + |2b+ 1|] anzn
}

≥ 1− (λ+ 1) [1 + |2b+ 1|]
{2|b|+ (λ+ 1)[1 + |2b+ 1|]}

r

− 1

{2|b|+ (λ+ 1)[1 + |2b+ 1|]}

∞∑
n=2

[1 + λ(n− 1)][(n− 1) + |2b+ n− 1||an|rn

> 1− (λ+ 1) [1 + |2b+ 1|]
{2|b|+ (λ+ 1)[1 + |2b+ 1|]}

r − 2 |b|
{2|b|+ (λ+ 1)[1 + |2b+ 1|]}

r

= 1− r > 0 (|z| = r < 1) ,

where we have also made use of assertion (1.11) of Lemma 4. Thus (2.5) holds true
in U . This proves the inequality (2.1). The inequality (2.2) follows from (2.1) by

taking the convex function g(z) =
z

1− z
= z+

∞∑
n=2

zn. To prove the sharpness of the

constant
(λ+ 1) [1 + |2b+ 1|]

2 {2|b|+ (λ+ 1)[1 + |2b+ 1|]}
, we consider the function f0(z) ∈ P ∗(λ, b)

given by

f0(z) = z − 2 |b|
(λ+ 1)[1 + |2b+ 1|]

z2 . (2.6)

Thus from (2.1), we have

(λ+ 1) [1 + |2b+ 1|]
2 {2|b|+ (λ+ 1)[1 + |2b+ 1|]}

f0(z) ≺
z

1− z
(z ∈ U) . (2.7)

106



M. K. Aouf – Some subordinations results for certain subclasses . . .

Moreover, it can easily be verified for the function f0(z) given by (2.6) that

min
|z|≤r

{
Re

(λ+ 1) [1 + |2b+ 1|]
2 {2|b|+ (λ+ 1)[1 + |2b+ 1|]}

f0(z)

}
= −1

2
. (2.8)

This shows that the constant
(λ+ 1) [1 + |2b+ 1|]

2 {2|b|+ (λ+ 1)[1 + |2b+ 1|]}
is the best possible.

Putting λ = 0 in Theorem 1, we obtain the following result.

Corollary 7. Let the function f(z) defined by (1.1) be in the class P ∗(0, b) = S∗(b)
and suppose that g(z) ∈ K. Then(

[1 + |2b+ 1|]
2 [2|b|+ 1 + |2b+ 1|]

)
(f ∗ g)(z) ≺ g(z) (z ∈ U) (2.9)

and

Re(f(z)) > − [2|b|+ 1 + |2b+ 1|]
[1 + |2b+ 1|]

(z ∈ U) .

The constant factor
[1 + |2b+ 1|]

2 [2|b|+ 1 + |2b+ 1|]
in the subordination result (2.9) cannot be

replaced by a larger one.

Putting λ = 1 in Theorem 1, we obtain the following result.

Corollary 8. Let the function f(z) defined by (1.1) be in the class P ∗(1, b) = C∗(b)
and suppose that g(z) ∈ K. Then(

1 + |2b+ 1|
2 [|b|+ 1 + |2b+ 1|]

)
(f ∗ g)(z) ≺ g(z) (z ∈ U) (2.10)

and

Re(f(z)) > −|b|+ 1 + |2b+ 1|
1 + |2b+ 1|

(z ∈ U) .

The constant factor
1 + |2b+ 1|

2 [|b|+ 1 + |2b+ 1|]
in the subordination result (2.10) cannot be

replaced by a larger one.

Remark 1. Putting (i) λ = 0 and b = 1 − α, 0 ≤ α < 1 (ii) λ = 1 and b =
1 − α, 0 ≤ α < 1 (iii) λ = 0 and b = 1 (iv) λ = b = 1 in Theorem 1, we obtain
the results obtained by Ozkan [8, Corollaries 2.4, 2.5, 2.6 and 2.7, respectively] .
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Theorem 9. Let f(z) ∈ R∗(λ, b). Then, for the function g ∈ K(
(1 + λ)

[2(1 + λ) + |b|]

)
(f ∗ g)(z) ≺ g(z) (z ∈ U) (2.11)

and

Re(f(z)) > − [1(1 + λ) + |b|]
2(1 + λ)

(z ∈ U) . (2.12)

The constant factor
(1 + λ)

[2(1 + λ) + |b|]
in the subordination result (2.11) cannot be re-

placed by a larger one.

Proof. Let f(z) ∈ R∗(λ, b) and let g(z) = z +
∞∑
n=2

cnz
n ∈ K. Then we have

(1 + λ)

[2(1 + λ) + |b|]
(f ∗ g)(z) =

(1 + λ)

[2(1 + λ) + |b|]

(
z +

∞∑
n=2

ancnz
k

)
. (2.13)

Thus, by Definition 3, the subordination result (2.11) will hold if the sequence{
(1 + λ)

[2(1 + λ) + |b|]
an

}∞
n=1

(2.14)

is a subordinating factor sequence, with a1 = 1. In view of Lemma 1, this is
equivalent to the following inequality :

Re

{
1 +

∞∑
n=1

2(1 + λ)

[2(1 + λ) + |b|]
anz

n

}
> 0 (z ∈ U) . (2.15)

Now, since
Φ(n) = n [1 + λ(n− 1)]

is an increasing function of n (n ≥ 2), we have

Re

{
1 +

(1 + λ)

[2(1 + λ) + |b|]

∞∑
n=1

anz
n

}

= Re

{
1 +

2(1 + λ)

[2(1 + λ) + |b|]
z +

1

[2(1 + λ) + |b|]

∞∑
n=2

2(1 + λ)anz
n

}

≥ 1− 2(1 + λ)

[2(1 + λ) + |b|]
r − 1

[2(1 + λ) + |b|]

∞∑
n=2

n [1 + λ(n− 1)] |an| rn

> 1− 2(1 + λ)

[2(1 + λ) + |b|]
r − |b|

[2(1 + λ) + |b|]
r

= 1− r > 0 (|z| = r < 1) ,
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where we have also made use of assertion (1.12) of Lemma 5. Thus (2.15) holds true
in U . This proves the inequality (2.11). The inequality (2.12) follows from (2.11)

by taking the convex function g(z) =
z

1− z
= z+

∞∑
n=2

zn. To prove the sharpness of

the constant
(1 + λ)

2(1 + λ) + |b|
, we consider the function f1(z) ∈ R∗(λ, b) given by

f1(z) = z − |b|
2(1 + λ)

z2 . (2.16)

Thus from (2.11), we have

(1 + λ)

[2(1 + λ) + |b|]
f1(z) ≺

z

1− z
(z ∈ U) . (2.17)

Moreover, it can easily be verified for the function f1(z) given by (2.16) that

min
|z|≤r

{
Re

(1 + λ)

[2(1 + λ) + |b|]
f1(z)

}
= −1

2
. (2.18)

This shows that the constant
(1 + λ)

[2(1 + λ) + |b|]
is the best possible.

Putting λ = 0 in Theorem 2, we obtain the following result.

Corollary 10. Let the function f(z) defined by (1.1) be in the class R∗(0, b) = R∗(b)
and suppose that g(z) ∈ K. Then(

1

2 + |b|

)
(f ∗ g)(z) ≺ g(z) (z ∈ U) (2.19)

and

Re(f(z)) > −2 + |b|
2

(z ∈ U) . (2.20)

The constant factor
1

2 + |b|
in the subordination result (2.19) cannot be replaced by

a larger one.

Remark 2. (i) Putting b = 1−α, 0 ≤ α < 1 and (ii) b = 1 in Corollary 3, we obtain
the results obtained by Ozkan [8, Corollary 2.10 and Corollary 2.11, respectively].
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