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ON PARAMETERS ESTIMATION OF STATIONARY AR(1) WITH
NONZERO MEAN ALPHA-STABLE INNOVATIONS IN THE CASE

α ∈]1, 2]

T. Mami, A. Yousfate

Abstract. Most of articles on stationary first order autoregressive processes in
model given by :

Xn = λXn−1 + Zn, n ∈ Z

with i.i.d. alpha-stable innovations in the case α > 1, consider a common mean
centered on zero. Whereas one doesn’t know the data so indeed are centered or not.
In this synthesis, we are going to omit this assumption to take the innovations that
haven’t zero of mean and we will use obtained results in the i.i.d. case for estimating
the parameters of a stable AR(1) via the residuals estimators.
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1. Introdution

Consider a first order autoregressive model defined by :

Xn = λXn−1 + Zn, n ∈ Z (1)

where λ is AR(1) parameter such as |λ| < 1 .The sequence (Zn) of innovations is sup-
posed independent and identically distributed (i.i.d.) and has common distribution
G is a Levy-stable law with stability index αz ∈]1, 2] indicated by Sαz(µz, βz, γz);
consequently , it satisfies a standard tail regularity and balance condition, i.e. :

1−G(z) ∼ pzCαzz
−αz , G(−z) ∼ qzCαzz

−αz (2)

and
1−G(z)

1−G(z) +G(−z)
∼ pz ,

G(−z)
1−G(z) +G(−z)

∼ qz (3)
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as z → ∞, pz and qz are non-negative constants with pz + qz = 1 and Cαz > 0
is some constant.(the notation a(t) ∼ b(t) denote the fact that a(t)/b(t) → 1 as
t→∞)

It is well known that in this setup, the distribution of the sequence (Xn) has
the same type that the one of the innovations i.e. :

Xn ∼ Sαx(µx, βx, γx)

where αx, µx, βx, γx are its stability index, mean, skewness and dispersion parame-
ters; and consequently, in the same way, this last satisfies a standard tail regularity
and balance condition, i.e. :

1− F (x) ∼ pxCαxx
−α , F (−x) ∼ qxCαxx

−α (4)

and
1− F (x)

1− F (x) + F (−x)
∼ px ,

F (−x)

1− F (x) + F (x)
∼ qx (5)

as x → ∞ and where F designed distribution function of Xn, px and qx are non-
negative constants with px + qx = 1 and Cαx > 0. Only that, both distributions
have the same characteristic exponent : αz = αx that we will note simply α (see
[10]).

we are going to try in this synthesis, after having estimated the autoregressive
coefficient to apply the known enough results on the random variables i.i.d. to
residuals, while starting from a process finite realization X0, X1, X2, ..., Xn in order
to estimate the AR(1) parameter and those of its distribution.

2. The AR(1) parameter

Let us consider a finite sequence X0, X1, X2, ..., Xn of real random variables
which we suppose verifying the autoregressive stable AR(1) model given by (1).

Generally, for an unspecified α-stable law, the well known consistent estimator
of λ (see [12]) is given by :

λ̂n =

∑n
i=1XiXi−1∑n
i=1X

2
i−1

(6)

However, when the mean exists i.e. α > 1 the estimator for λ is replaced by its
mean corrected version [12] :

λ̃n =

∑n
i=1(Xi − X̄n)(Xi−1 − X̄n)∑n

i=1(Xi−1 −Xn)2
(7)
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where : X̄n = (n+ 1)−1
∑n

i=0Xi.
It is shown that under conditions (4), (5), the stationarity condition λ < 1 and

for some other condition, the estimator given by (7) is also consistent (see corollary
of theorem 4.2. in [12]) i.e.

λ̃n
p−→ λ.

and more precisely [5]

λ̃n − λ = Op([n/ log n])1/α = op(n
1/θ) for all θ > α

Furthermore, in the case α = 2, both estimators (6) and (7) have limiting
normal distributions [5]. But, in the case 1 < α < 2 the limit distributions of these
estimators are complex and they are presented each one, in the form as the ratio of
two stable laws with specific parameters multiplied by some constant which depend
on α, for more details, see [13].

3. Parameters Estimation of AR(1) Stable Distribution

3.1. Levy-stable distributions
The rich class of Levy-stable distributions was introduced and characterized

by Paul Levy, about 1925 in his study of normalized sums of independent random
variables. It is a class of distributions that allow skewness and fat tails; it includes
those of Gaussian and Cauchy and has many intriguing mathematical properties.
They were suggested like models for many types of physical and economic systems.

The drawback for these distributions is the lack of explicit formulas for their
densities allowing their use, except three cases, in which, one knows their formulas
(Gaussian, Cauchy and Levy distributions). Luckily, now there are reliable computer
programs to compute Levy-stable distribution functions, densities and quantiles see
for example [33] and [35] . Thus, it is possible to use Levy-stable models in various
practical fields.

3.2. Characteristic function of Levy-stable distributions
Such distributions are known via their characteristic function and they are

generally described by four parameters : a characteristic exponent (index of stability,
tail exponent) α ∈]0, 2], a skewness parameter β ∈ [−1, 1], a dispersion parameter
γ ∈]0,∞[, a location parameter µ ∈]−∞,+∞[ and they are indicate by Sα(µ, β, γ).

When α > 1, the mean of distribution exits and is equal to µ and in this case
one will note it by ”m”; When the skewness parameter β is positive, the distribution
is skewed to right. When β = 0, the distribution is symmetric about m and other-
wise, it’s skewed to left. As α is close to 2, β loses its effect and the distribution
approaches the Gaussian distribution without being concerned with value of β.
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The characteristic function representation of Levy-stable distribution under
our condition α > 1 is given by:

ϕZ(t) = exp
{
imt− γ|t|α

(
1− iβ tan(

απ

2
)sgn(t)

)}
(8)

Note that the parameter of dispersion γ is sometimes replaced by what is called
the ”scale parameter” σ > 0 (see[45]) with γ = σα and if γ = 1 and m = 0 the
distribution is called a ”standard Levy-stable distribution”. When β = 0 and m = 0
i.e. ϕZ(t) = exp{−γ|t|α} then the distribution is noted SαS(γ) and it is called a
symmetric α-stable distribution.

3.3. Estimating the parameters for an i.i.d. sample
There are at least five principal approaches used for estimating parameters

of a Levy-stable distribution Sα(µ, β, γ) on the basis of an observed i.i.d sample
Z1, Z2, ...Zn :

3.3.1. Extreme value approach
This one is especially used to estimate the tail index which is equivalent to

inverse of characteristic exponent in the case of stable distributions. The idea is
based on the well known following result :

Theorem 1. Suppose Z1, Z2, ..., Zn are i.i.d. from distribution G which verifying a
regular variation condition

1−G(z) = z−αL(z), z > 0

with L(z) is a slower varying function L(tz)/L(z)→ 1 as t→∞

Let 0 < Z1,n < Z2,n < ... < Zn,n be the order statistics.Then, the Hill estimator
defined by expression

Hk,n = k−1
∑k

i=1 logZn−k+i,n − logZn−k,n

is consistent for tail index parameter i.e.

Hk,n
p−→ α−1

when n→∞, k →∞ and k/n→ 0.

The consistency (weak or strong) and normality asymptotic in both cases, i.i.d.
model and linear model, of Hill’s estimator and its extensions ( Dekkers-Einmahl-de
Hann’s estimator) have been proved by many authors as : Pickands [42], Mason
[30], Hall [23], Davis and Resnick [11], Csorgo and al [8], Goldie and Smith [20],
Hsing [27], de Hann and Resnick ([?], [36]), Resnick and Starica [43], Datta and
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McCormick [10], de Hann and Peng [14] etc.

Once the characteristic exponent was estimating by extreme values theory, one
can then estimate the other parameters of Levy-stable distribution like mean, skew-
ness and dispersion parameter.

Indeed, in the situation where α > 1 we have :

1. Mean’s estimator:

As regards the location parameter which is equal the mean m of distribution
we have the Peng’s estimator [39] :

mP
n (k) = m̂−n (k) + m̂n(k) + m̂+

n (k)

where :

m̂−n (k) := (k/n)Zk,n α̂
−
n /(α̂

−
n − 1) ,

m̂+
n (k) := (k/n)Zn−k+1,n α̂

+
n /(α̂

+
n − 1),

and the trimmed mean m̂n(k) := n−1
∑n−k

i=k+1 Zi,n

with :

α̂−n :=

{
1

k

k∑
i=1

log+(−Zi,n)− log+(−Zk,n)

}−1
= 1/H−k,n (9)

and :

α̂+
n :=

{
1

k

k∑
i=1

log+(Zn−i+1,n)− log+(Zn−k+1,n)

}−1
= 1/H+

k,n (10)

H−k,n and H+
k,n are respectively the Hill estimators of the tail index correspond-

ing to each of the two extremities left and right-hand side of Levy-distribution
Sα(m,β, γ). (Here log+ z := log(z ∨ 1) , z is a real).

The Peng estimator is asymptotically normal under some conditions [39]
and the strong limiting behavior of mP

n (k) has been studied by Necir [36] to
construct a sequential test with power 1 for the mean of Levy-stable distribu-
tion.

2. Dispersion’s estimator:

As regards the dispersion parameter γ we have the Meraghni and Necir’s esti-
mator [31]:
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γ̂n(k) :=

(
kπ/2nΓ(α̂n) sin

πα̂n
2

)
Y α̂n
n−k,n

where α̂n = 1/Hk,n the Hill’s estimator of exponent characteristic and Yn−k,n
denote the order statistic |Z|n−k,n of the sequence |Z1|, |Z2|, ..., |Zn|.

It is shown in [31] that γ̂n(k) is a consistent estimator for the dispersion
parameter γ and if the distribution function belongs to Hall’s class of models
[22] and under some condition, this estimator is asymptotically normal.

3. asymmetry’s estimator:

As regards the skewness parameter β = 2p−1, we have the following estimator
due to de Hann and Preira in [17] for balance parameter p :

p̂n = k−1
∑n

i=1 1{Zi>|Z|n−k,n}

where k = k(n) → ∞ and k/n → 0 (n → ∞), wich is consistent under (3)
and the condition which is always verified by the stable distributions :

lim
z→∞

1−G(z) +G(−z)∫ z
−z t

2dG(t)
=

2− α
α

.

and in addition, under some others conditions (see [17]) and when 0 < p < 1
then :

√
k(p̂n − p) −→ N (0,

√
p(1− p))

3.3.2. The regression approach on sample characteristic function
The idea of the use of the characteristic function sampled to approach the the-

oretical characteristic function as well as possible, is justified by the fact that there
exists a bijective mapping between the distributions functions and their transforms
of Fourier-Stieltjes; And the first which proposed this method was Press in 1972 in
his article [40] on the estimate of the parameters of a stable distribution called the
method of moments, based on transformations of the characteristic function. Comes
then, the proposal made by Paulson, Holcomb and Leitch in [41], called method of
minimum of distance between the theoretical characteristic function and that of its
sampled function.

Koutrouvilis in [28] propose a method based on the regression applied to the
function characteristic.
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Starting from the general expression of the characteristic function of the stable
law given by 8, one can obtain the following writing:

log(− log |ϕZ(t)|2) = log(2γ) + α log |t|. (11)

which is a function in α. Consequently, one can adjust a linear regression:

xk = C + αyk + εk (12)

by posing xk = log(− log |ϕ̂Z(tk)|2) where tk = kπ/25, k = 1, 2, ...,K, 9 ≤ K ≤ 134
according to the proposal of Koutrouvelis, εk denotes an error term, C = log(2γ)
and yk = log |tk|, which makes it possible to obtain α̂ and γ̂.

Estimators of β and m can be obtained from :

arctan

(
Im(ϕZ)(t)

Re(ϕZ)(t)

)
= mt+ βγ tan

πα

2
sgn(t)|t|α (13)

by taking hn(t) = arctan
(
Im(ϕ̂Z)(t)
Re(ϕ̂Z)(t)

)
where ϕ̂Z is the sample characteristic function

:

ϕ̂Z(t) =
(
n−1

∑n
j=1 cos(tzj)

)
+ i
(
n−1

∑n
j=1 cos(tzj)

)
and s = hn(u) + πkn(u) (the integer kn(u) makes it possible to consider the other
values of the function arctan). Then, one can adjust a linear regression :

sj = muj + βγ̂ tan πα̂
2 sgn(uj)|uj |α̂ + ηj .

where uj = πj
50 , j = 1, 2, ..., L for a suitable L (see [28]) and ηj denotes an error

term.

The asymptotic convergence and the normality of the estimators of least
squares in a linear regression are well-known.The principal disadvantage of this
method is that the results are unsatisfactory when the sample is not standard-
ized [48].To mitigate this problem, Koutrouvelis in [29] proposed another alterna-
tive known as ”method of iterative regression” whose results are much better for a
greater area of parametric space.

3.3.3. L-moments approach The principal idea in this approach which is
based on the notion of the ”weighted moment” balanced by the law itself, initiated
by Greenwood et al. [21] and valid even if only the moment of first order exists,
consists in considering linear combinations of these weighted moments.

Let us recall by this occasion the definition of the weighted moments, for any
random variable X of distribution function F by:
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Mp,r,s = E{Zp[F (Z)]r[1− F (Z)]s}

where p, r and s are integers.

In particular for p = 1 and s = 0, we have δr := M1,r,0 =

∫
zF (z)rdF (z).

Also let us recall that the weighted moments admit an interpretation similar to
that of the ordinary moments like the measures of location, dispersion, asymmetry,
kurtosis and other aspects on the shape of the distributions or the samples.

Now, the L-moments are then defined by:
κ1 = δ0
κ2 = 2 δ1 − δ0
κ3 = 6δ2 − 6δ1 + δ0
κ4 = 20δ3 − 30δ2 + 12δ1 − δ0

as linear combinations with the shifted coefficients of Legendre polynomials [24].
Furthemore, the empirical weighted moments for a sample Z1, Z2, ..., Zn ordered

in ascending order, are defined by:

m0 =
1

n

n∑
i=1

Zi , mr =
1

n

n∑
i=r+1

(i− 1)(i− 2) . . . (i− r)
(n− 1)(n− 2) . . . (n− r)

Zi

The first L-moments of a sample are defined as for a random variable by :

l1 = m0

l2 = 2m1 −m0

l3 = 6m2 − 6m1 +m0

l4 = 20m3 − 30m2 + 12m1 −m0

One will equalize then, the empirical L-moments at the theoretical L-moments,
which enables us to obtain estimators for the four parameters of the distribution
S(α, µ, β, γ), by solving the system of equations :

κ1(α, µ, β, γ) = l1
κ2(α, µ, β, γ) = l2
κ3(α, µ, β, γ) = l3
κ4(α, µ, β, γ) = l4

Finally should it be said that the L-moments have a sense as soon as the moment
of order one exists even if the other moments miss, such as the stable laws in our case
where α > 1, and that the asymptotic approximation of the empirical distributions
is better for the L-moments than for the ordinary moments [25] as they are also less
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sensitive to the aberrant data ( [44],[47]).

This approach has the same advantages as the method of the traditional moments
such as consistency and asymptotic normality, therefore it is a method of very general
estimating; it is even very robust and less demanding and, in certain situations,
it gives estimators more effective than the estimators of maximum of likelihood
[25]. However, the main problem of this approach is that do not exist precise and
firm expressions for the theoretical L-moments what generates difficulties on the
resolution of the system of equation and inevitably leads to approximation errors.

3.3.4. Maximum Likelihood approach
It is one of the methods most used in statistics, it allows obtaining a consistent

estimator and, if it is unique, it is asymptotically without bias, effective and normal;
Only, this method remains often difficult to implement because the difficulty lies
mainly in the calculation of the likelihood probability,

L(α, µ, β, γ) =
∑n

i=1 log f(Zi, α, µ, β, γ)

which must be made in an approached way, with numerical methods of optimization,
this on the one hand.

On the other hand, with regard to the stable laws, there are no simple and firm
formulas expressing their densities, except in some known cases, which still poses
problem in the estimate of their parameters. However, there were attempts on behalf
of several mathematicians, making object of calculation on stable laws such as Holt
and Crow (1973, [26]) which provided tables of values of the density for various values
of α and β, Worsdale (1975, [50]) and Panton (1992, [38]) which provided tables of
the functions of distributions of the symmetrical stable laws; Mc Culloch and Panton
(1998,[33]) gave tables of the densities and quantiles for completely asymmetrical
stable laws; Zolotarev in [51] then, Noland (1996,[35]), this last which obtained
integral representations for the densities and the distribution functions as well as
the quantiles in a precise way in all parametric space, and all that implies that the
cost calculation is significant, without counting the error of approximation induced
by the integral formula. finally, let us note that in a comparative study, Ojeda
(2001)[37] noticed that the methods based on the maximum of likelihood are most
accurate except that them are slowest compared to others; The same remark was
observed by a simulative study by Stoyanov and Racheva-Iotova [46] and confirmed
by Weron in his calculations made on the value at Risk [49].

3.3.5. Quantiles approach
The work of McCulloch [32] was a generalization of the Fama and Roll ap-

proach to provide consistent estimators of all parameters with β is in its full per-
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missible ranges i.e. [−1,+1] but α is only in the range [0.6, 2.0].

The idea is to start with n independent drawing values z1, z2, ..., zn of a distri-
bution Sα(m,β, γ) to initially estimate the only parameters α and β using simple
index of five pre-determined sample quantiles, by considering :

lα =
z0.95 − z0.05
z0.75 − z0.25

, lβ =
z0.95 + z0.05 − 2z0.50

z0.95 − z0.05

for which it is shown that they do not depend on both γ and m, and the first one
is a strictly decreasing function of α for different values of β, and the second one
is strictly increasing function in β for each α. These are thus invertible functions
whose inverse functions are respectively :

α = ϕ1(lα, lβ) and β = ϕ2(lα, lβ)

(Here zp designing the p-th quantile of the distribution.)

Considering now their consistent estimators (see[32]) :

l̂α =
ẑ0.95 − ẑ0.05
ẑ0.75 − ẑ0.25

, l̂β =
ẑ0.95 + ẑ0.05 − 2ẑ0.50

ẑ0.95 − ẑ0.05
which allow to estimate consistently the parameters α and β like :

α̂ = ϕ1(l̂α, l̂β) and β̂ = ϕ2(l̂α, l̂β)

(Here ẑp designing the p-th empirical quantile).

Remark 1. In order to avoid a false asymmetry of the small samples, a correction
is necessary while arranging in the ascending order the zk := zq(k) with q(k) =
(2k − 1)/2n then we carry out a linear interpolation to obtain ẑp from ẑq(k) and
ẑq(k+1) where
q(k) ≤ p ≤ q(k + 1).

In a second phase, one will estimate the remainder of the parameters by using
the following index

lγ =
z0.75 − z0.25

γ1/α
:= ϕ3(α, β) , lm =

m− z0.5
γ1/α

:= ϕ4(α, β)

which give also the consistent estimators [32]:

γ̂ =

(
ẑ0.75 − ẑ0.25
ϕ3(α̂, β̂)

)α̂
, m̂ = γ̂1/α̂ ϕ4(α̂, β̂) + ẑ0.5
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As the estimator ẑp is consistent and asymptotically normal for zp and that the
functions ϕi are continuous, then the estimators of our stable law parameters are
consistent and asymptotically normal.

Also let us note that the functions defined above ϕ1, ϕ2, ϕ3 and ϕ4 can be cal-
culated on a network of points, thus forming tables like those of DuMouchel [18]
and being used as references for our calculation of the estimates of the whole of the
parameters of the stable distribution.

Only that this method based on the empirical quantiles goes with values of α
pertaining to interval [0.6, 2.0] (see [18]), what corresponds well for our case since
α > 1.

3.4. Estimating the parameters for the stable AR(1)
After having found an estimate of the autoregression parameter by using (7 ),

we can calculate now n residuals via the recursion :

Ẑk = Xk − λ̂Xk−1, k = 1, 2, ..., n

From this finite sequence of residuals, we can carry out the estimate of the whole
of distribution parameters of innovations i.e. αz, mz, βz and γz.

Once they are estimated we use the following properties [45] in order to find
estimators for the AR(1) distribution parameters :

Property 1. Let Z1 ∼ Sα(µ1, β1, γ1) and Z2 ∼ Sα(µ2, β2, γ2) be independent
stable random variables. Then,

Z1 + Z2 ∼ Sα(µ, β, γ)

where,

µ = µ1 + µ2 , β =
β1γ1 + β2γ2
γ1 + γ2

, γ = γ1 + γ2

Property 2. Let Z ∼ Sα(µ, β, γ) with α > 1 and c ∈ R. Then,

cZ ∼ Sα(cµ, sgn(c)β, |c|αγ)

Indeed, On the basis of the expression : Xn = λXn−1 + Zn with |λ| < 1
and α > 1 and the fact that Xn−1 is independent of Zn, we have the following
relationships between the different estimators :

• α̂X = α̂z = α̂

• m̂X =
m̂z

1− λ̂
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• β̂X =


β̂z 0 ≤ λ̂ < 1

1− |λ̂|α̂

1 + |λ̂|α̂
β̂z −1 < λ̂ < 0

• γ̂X =
γ̂z

1− |λ̂|α̂

4. Simulation

In this section, one will work on synthetic data by generating several sample
with several observations of a process AR(1) α-stable to which one will apply our
approach to estimate the parameter of the process AR(1) considered, then one will
collect the whole of the results obtained in a table on which one will specify also the
errors: absolute, relative and the mean squared ones.

On the examples which follow, we took various values for the parameters : α
and β by pushing them even with controversial limits of the point of considering
simulation, while fixing the coefficient of autocorrelation λ at the value of 1.2 as in
the first eight cases ; and in the second time, more precisely in the last both cases,
we increased his value towards limits close to 1.

N.B. We preferred to work here with the scale parameter σ = γ1/α instead of
the dispersion parameter and we notice S(α, β, σ,m) instead of Sα(m,β, γ) and this
in accordance with the notation used in R for the stable distributions .

In each table, we indicate:

• In top, the equation of AR(1) process in which one specified the theoreti-
cal value of the coefficient λ and theoretical values of its theoric distribution
S(α, βx, σx,mx) which parameters are calculate by the last formulas from those
of the innovations.

• In bottom and on the first line, one mentioned in the left part, the estimates
(the mean values of estimates) of the five parameters of AR(1) i.e. λ̂ and α̂,
m̂x, β̂x, σ̂x calculated by our approach and in the right part, the estimates
α̃, m̃x, β̃x, σ̃x of these same parameters obtained, as comparison, directly on
the sample X1, X2, ..., Xn i.e., without passing by the residues, and this, for
various sizes of samples (n = 500, 1000, 10000) and for one hundred replications
(r = 100) of each one.

• In addition and in bottom, we are indicate their corresponding errors: absolute
errors (AE), relative errors (RE) and mean square errors (MSE).
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4.1. Comments
As a whole, the results are very satisfactory by comparing them with the values

which the direct estimation of the set of the parameters could provide on the origine
sample X1, X2, ..., Xn.

We have some comments that here:

• In the first series and for the theoretical AR(1) parameters :

λ = 0.2, α = 1.2, βx = 0.1, σx = 1.1695, mx = 6.25

which obtained from innovation theoric parameters αz = α = 1, 2, mz = 5,
βz = 0, 1, σz = 1 by applied formulas. we have generally, concerning the
absolute errors, the estimates of our approach are about the thousandths near,
on the other hand those being on the right are hundredth near. Even notices
on the relative errors. For the MSE errors of this approach are better in the
majority of the cases.

• In the second series and for the theoretical AR(1) parameters :

λ = 0.2, α = 1.5, βx = 0.1, σx = 1.0982, mx = 6.25

where α increased value, one notices the same thing for this case too.

• In the third series and for the theoretical AR(1) parameters :

λ = 0.2, α = 1.2, βx = 0.5, σx = 1.1695, mx = 6.25

where this time β increased value, one remarks the same thing for the absolute
and relative errors. Concerning the MSE, they are better except perhaps for
the average in the sample of 500 observations.

• In the forth series and for the theoretical AR(1) parameters :

λ = 0.2, α = 1.2, βx = 0.9, σx = 1.1695, mx = 6.25

where β is almost +1 (almost totally right skewed), we have the same remark
of the preceding case.

• In the fifth series and for the theoretical AR(1) parameters :

λ = 0.2, α = 1.2, βx = −0.9, σx = 1.1695, mx = 6.25

where β is almost −1 (almost totally left skewed), we have the same remark
of the preceding case.
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• In the sixth series and for the theoretical AR(1) parameters :

λ = 0.2, α = 1.7, βx = 0.1, σx = 1.0693, mx = 6.25

where α increased value. There are practically the same performances for both
approaches.

• In the seventh series and for the theoretical AR(1) parameters :

λ = 0.2, α = 1.8, βx = 0.1, σx = 1.0584, mx = 6.25

where α increased value more, there are not great changes and we have even
notices that previously.

• In the eighth series and for the theoretical AR(1) parameters :

λ = 0.2, α = 1.9, βx = 0.1, σx = 1.0493, mx = 6.25

where α is close to 1, the absolute and relative errors are better in the majority
of the cases; For the MSE errors, the values are very close to each other.

• In the ninth series and for the theoretical AR(1) parameters :

λ = 0.8, α = 1.2, βx = 0.1, σx = 4.2568, mx = 25

where this time the autoregressive coefficient λ which increases value towards
1, we remark that the errors for our approach are better except two cases of
the mean.

• In the last series and for the theoretical AR(1) parameters :

λ = 0.95, α = 1.8, βx = 0.1, σx = 11, 3387, mx = 100

where the autoregressive coefficient λ is close to 1, we remark that in spite of
the instability sometimes of the results, the errors for our approach are better
except for some cases.
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AR(1): Xn = 0.2Xn−1 + Zn

Theoretical values of S(α, βx, σx,mx)
α βx σx mx

1.2000 0.1000 1.1695 6.2500

Estimated values via {Ẑk} Estimated values directly on {Xk}
λ̂ α̂ β̂x σ̂x m̂x α̃ β̃x σ̃x m̃x

r = 100, n = 500
0.1993 1.2013 0.0763 1.1722 6.2726 1.2011 0.0704 1.1364 6.2850

AE 0.0007 0.0013 0.0237 0.0027 0.0226 0.0011 0.0296 0.0331 0.0350
RE 0.0035 0.0011 0.2370 0.0023 0.0036 0.0009 0.2960 0.0283 0.0056

MSE 0.0015 0.0055 0.0192 0.0087 0.1429 0.0049 0.0255 0.0062 0.0144
r = 100, n = 1000

0.1993 1.2175 0.0996 1.1651 6.2460 1.2032 0.0817 1.1346 6.2863
AE 0.0007 0.0175 0.0004 0.0044 0.0040 0.0031 0.0183 0.0349 0.0363
RE 0.0035 0.0146 0.0040 0.0038 0.0060 0.0027 0.1830 0.0299 0.0058

MSE 0.0006 0.0028 0.0075 0.0024 0.0480 0.0024 0.0121 0.0034 0.0056
r = 100, n = 10000

0.1991 1.1998 0.0997 1.1681 6.2458 1.2003 0.0992 1.1384 6.2842
AE 0.0009 0.0002 0.0003 0.0014 0.0042 0.0003 0.0008 0.0311 0.0342
RE 0.0045 0.0002 0.0030 0.0012 0.0007 0.0002 0.0080 0.0266 0.0055

MSE 4.7e -05 0.0003 0.0008 0.0003 0.0028 0.0004 0.0012 0.0013 0.0016

Table 1: For λ = 0.2 as autoregressive parameter and αz = 1.2, βz = 0.1, σz =
1, mz = 5 as theoretical parameters of the distribution S(αz, βz, σz,mz) of the
innovations.
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AR(1): Xn = 0.2Xn−1 + Zn

Theoretical values of S(α, βx, σx,mx)
α βx σx mx

1.5000 0.1000 1.0982 6.2500

Estimated values via {Ẑk} Estimated values directly on {Xk}
λ̂ α̂ β̂x σ̂x m̂x α̃ β̃x σ̃x m̃x

r = 100, n = 500
0.1968 1.5135 0.0802 1.0953 6.2339 1.4978 0.0534 1.0648 6.2709

AE 0.0032 0.0135 0.0198 0.0029 0.0161 0.0022 0.0466 0.0334 0.0209
RE 0.0160 0.0090 0.1980 0.0027 0.0026 0.0015 0.4660 0.0304 0.0033

MSE 0.0009 0.0093 0.0271 0.0042 0.0646 0.0102 0.0329 0.0049 0.0096
r = 100, n = 1000

0.1986 1.5019 0.1024 1.0975 6.2440 1.4917 0.1029 1.0651 6.2614
AE 0.0014 0.0019 0.0024 0.0007 0.0060 0.0083 0.0029 0.0331 0.0114
RE 0.0070 0.0013 0.0240 0.0007 0.0010 0.0055 0.0290 0.0302 0.0018

MSE 0.0006 0.0038 0.0090 0.0018 0.0389 0.0044 0.0122 0.0030 0.0045
r = 100, n = 10000

0.2000 1.5036 0.0998 1.0963 6.2529 1.5026 0.1002 1.0627 6.2699
AE 0.0000 0.0036 0.0002 0.0019 0.0029 0.0026 0.0002 0.0355 0.0199
RE 0.0000 0.0024 0.0020 0.0018 0.0005 0.0017 0.0020 0.0324 0.0032

MSE 6 e -05 0.0004 0.0010 0.0002 0.0047 0.0005 0.0012 0.0014 0.0009

Table 2: For λ = 0.2 as autoregressive parameter and αz = 1.5, βz = 0.1, σz =
1, mz = 5 as theoretical parameters of the distribution S(αz, βz, σz,mz) of the
innovations.
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AR(1): Xn = 0.2Xn−1 + Zn

Theoretical values of S(α, βx, σx,mx)
α βx γx mx

1.2000 0.5000 1.1695 6.2500

Estimated values via {Ẑk} Estimated values directly on {Xk}
λ̂ α̂ β̂x σ̂x m̂x α̃ β̃x σ̃x m̃x

r = 100, n = 500
0.2001 1.2051 0.5054 1.1781 6.2736 1.2023 0.4841 1.1535 6.4330

AE 0.0001 0.0051 0.0054 0.0086 0.0236 0.0023 0.0159 0.0160 0.1830
RE 0.0005 0.0043 0.0108 0.0073 0.0038 0.0019 0.0318 0.0137 0.0293

MSE 0.0013 0.0064 0.0110 0.0071 0.1211 0.0073 0.0156 0.0089 0.0432
r = 100, n = 1000

0.2029 1.2119 0.4973 1.1691 6.2864 1.2097 0.4836 1.1430 6.4261
AE 0.0029 0.0119 0.0027 0.0004 0.0364 0.0097 0.0164 0.0265 0.1761
RE 0.0145 0.0099 0.0054 0.0004 0.0058 0.0081 0.0328 0.0227 0.0282

MSE 0.0008 0.0041 0.0041 0.0057 0.0878 0.0039 0.0067 0.0048 0.0353
r = 100, n = 10000

0.1999 1.2043 0.5044 1.1702 6.2514 1.2035 0.5031 1.1414 6.4205
AE 0.0001 0.0043 0.0044 0.0007 0.0014 0.0035 0.0031 0.0281 0.1705
RE 0.0005 0.0036 0.0088 0.0006 0.0002 0.0029 0.0062 0.0241 0.0273

MSE 2 e -05 0.0005 0.0006 0.0002 0.0018 0.0004 0.0007 0.0011 0.0295

Table 3: For λ = 0.2 as autoregressive parameter and αz = 1.2, βz = 0.5, σz =
1, mz = 5 as theoretical parameters of the distribution S(αz, βz, σz,mz) of the
innovations.
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AR(1): Xn = 0.2Xn−1 + Zn

Theoretical values of S(α, βx, σx,mx)
α βx σx mx

1.2000 0.9000 1.1695 6.2500

Estimated values via {Ẑk} Estimated values directly on {Xk}
λ̂ α̂ β̂x σ̂x m̂x α̃ β̃x σ̃x m̃x

r = 100, n = 500
0.1954 1.1897 0.8818 1.1731 6.2220 1.1918 0.8666 1.1564 6.5661

AE 0.0046 0.0103 0.0182 0.0036 0.0280 0.0082 0.0334 0.0131 0.3161
RE 0.0230 0.0086 0.0202 0.0031 0.0045 0.0068 0.0371 0.0112 0.0506

MSE 0.0013 0.0064 0.0110 0.0071 0.1211 0.0073 0.0156 0.0089 0.0432
r = 100, n = 1000

0.1983 1.2041 0.8918 1.1741 6.2576 1.2047 0.8773 1.1435 6.5789
AE 0.0017 0.0041 0.0082 0.0046 0.0076 0.0047 0.0227 0.0260 0.3289
RE 0.0085 0.0034 0.0091 0.0039 0.0012 0.0039 0.0252 0.0223 0.0526

MSE 0.0008 0.0041 0.0041 0.0057 0.0878 0.0039 0.0067 0.0048 0.0353
r = 100, n = 10000

0.1991 1.1980 0.9004 1.1675 6.2441 1.2015 0.9048 1.1397 6.5551
AE 0.0009 0.0020 0.0004 0.0020 0.0059 0.0015 0.0048 0.0298 0.3051
RE 0.0045 0.0017 0.0004 0.0017 0.0009 0.0013 0.0053 0.0255 0.0488

MSE 2 e -05 0.0005 0.0006 0.0002 0.0018 0.0004 0.0007 0.0011 0.0295

Table 4: For λ = 0.2 as autoregressive parameter and αz = 1.2, βz = 0.9, σz =
1, mz = 5 as theoretical parameters of the distribution S(αz, βz, σz,mz) of the
innovations.
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AR(1): Xn = 0.2Xn−1 + Zn

Theoretical values of S(α, βx, σx,mx)
α βx σx mx

1.2000 -0.9000 1.1695 6.2500

Estimated values via {Ẑk} Estimated values directly on {Xk}
λ̂ α̂ β̂x σ̂x m̂x α̃ β̃x σ̃x m̃x

r = 100, n = 500
0.1924 1.1881 -0.8769 1.1634 6.1826 1.1965 -0.8837 1.1408 5.9212

AE 0.0076 0.0119 0.0231 0.0061 0.0674 0.0035 0.0163 0.0287 0.3288
RE 0.0380 0.0099 -0.0257 0.0052 0.0108 0.0029 -0.0181 0.0246 0.0526

MSE 0.0006 0.0060 0.0064 0.0045 0.0640 0.0075 0.0065 0.0064 0.1255
r = 100, n = 1000

0.2022 1.1910 -0.8894 1.1708 6.2602 1.1802 -0.8810 1.1319 5.9343
AE 0.0022 0.0090 0.0106 0.0013 0.0102 0.0198 0.0190 0.0376 0.3157
RE 0.0110 0.0075 -0.0118 0.0011 0.0016 0.0165 -0.0211 0.0322 0.0505

MSE 0.0005 0.0047 0.0045 0.0035 0.0407 0.0048 0.0048 0.0041 0.1086
r = 100, n = 10000

0.1992 1.1215 -0.9066 1.1685 6.2472 1.2038 -0.9114 1.1398 5.9476
AE 0.0008 0.0015 0.0066 0.0010 0.0028 0.0038 0.0114 0.0297 0.3024
RE 0.0040 0.0013 -0.0073 0.0009 0.0004 0.0032 -0.0127 0.0254 0.0484

MSE 2 e -05 0.0005 0.0012 0.0003 0.0025 0.0006 0.0012 0.0011 0.0924

Table 5: For λ = 0.2 as autoregressive parameter and αz = 1.2, βz = −0.9, σz =
1, mz = 5 as theoretical parameters of the distribution S(αz, βz, σz,mz) of the
innovations.
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AR(1): Xn = 0.2Xn−1 + Zn

Theoretical values of S(α, βx, σx,mx)
α βx σx mx

1.7000 0.1000 1.0693 6.2500

Estimated values via {Ẑk} Estimated values directly on {Xk}
λ̂ α̂ β̂x σ̂x m̂x α̃ β̃x σ̃x m̃x

r = 100, n = 500
0.1973 1.6969 0.0865 1.0709 6.2520 1.7009 0.0549 1.0466 6.2712

AE 0.0027 0.0031 0.0135 0.0016 0.0020 0.0009 0.0451 0.0227 0.0212
RE 0.0135 0.0018 0.1350 0.0015 0.0003 0.0005 0.4510 0.0212 0.0034

MSE 0.0011 0.0103 0.0989 0.0034 0.0833 0.0128 0.1274 0.0040 0.0118
r = 100, n = 1000

0.2005 1.784 0.1186 1.0684 6.2715 1.7188 0.0921 1.0358 6.2694
AE 0.0005 0.0284 0.0186 0.0009 0.0215 0.0188 0.0079 0.0335 0.0194
RE 0.0025 0.0167 0.1860 0.0009 0.0034 0.0111 0.0790 0.0313 0.0031

MSE 0.0009 0.0073 0.0672 0.0014 0.0856 0.0080 0.0481 0.0025 0.0050
r = 100, n = 10000

0.2000 1.7056 0.1048 1.0710 6.2494 1.7072 0.1033 1.0426 6.2615
AE 0.0000 0.0056 0.0048 0.0017 0.0006 0.0072 0.0033 0.0267 0.0115
RE 0.0000 0.0033 0.0480 0.0016 0.0001 0.0042 0.0330 0.0250 0.0018

MSE 5 e -05 0.0007 0.0029 0.0001 0.0042 0.0007 0.0035 0.0008 0.0007

Table 6: For λ = 0.2 as autoregressive parameter and αz = 1.7, βz = 0.1, σz =
1, mz = 5 as theoretical parameters of the distribution S(αz, βz, σz,mz) of the
innovations.
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AR(1): Xn = 0.2Xn−1 + Zn

Theoretical values of S(α, βx, σx,mx)
α βx σx mx

1.8000 0.1000 1.0584 6.2500

Estimated values via {Ẑk} Estimated values directly on {Xk}
λ̂ α̂ β̂x σ̂x m̂x α̃ β̃x σ̃x m̃x

r = 100, n = 500
0.2026 1.7592 0.1085 1.0523 6.2499 1.7759 0.0314 1.0300 6.2540

AE 0.0026 0.0408 0.0085 0.0061 0.0001 0.0241 0.0686 0.0284 0.0040
RE 0.0130 0.0227 0.0850 0.0058 0.0000 0.0134 0.6860 0.0268 0.0006

MSE 0.0013 0.0125 0.1737 0.0028 0.0842 0.0114 0.2334 0.0038 0.0120
r = 100, n = 1000

0.2000 1.7999 0.0914 1.0556 6.2549 1.7831 0.0719 1.0234 6.2540
AE 0.0000 0.0001 0.0086 0.0028 0.0049 0.0169 0.0281 0.0350 0.0400
RE 0.0000 0.0001 0.0860 0.0027 0.0008 0.0094 0.2810 0.0331 0.0006

MSE 0.0005 0.0075 0.1047 0.0016 0.0378 0.0069 0.1134 0.0030 0.0075
r = 100, n = 10000

0.2000 1.7986 0.0949 1.0568 6.2510 1.8006 0.0950 1.0314 6.2569
AE 0.0000 0.0014 0.0051 0.0016 0.0010 0.0006 0.0050 0.0270 0.0069
RE 0.0000 0.0008 0.0510 0.0015 0.0002 0.0003 0.0500 0.0255 0.0011

MSE 7 e -05 0.0007 0.0064 0.0001 0.0059 0.0008 0.0070 0.0008 0.0007

Table 7: For λ = 0.2 as autoregressive parameter and αz = 1.8, βz = 0.1, σz = 1,
mz = 5 as theoretical parameters of the distribution S(αz, βz, σ,mz) of the innova-
tions.
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AR(1): Xn = 0.2Xn−1 + Zn

Theoretical values of S(α, βx, σx,mx)
α βx σx mx

1.9000 0.1000 1.0493 6.2500

Estimated values via {Ẑk} Estimated values directly on {Xk}
λ̂ α̂ β̂x σ̂x m̂x α̃ β̃x σ̃x m̃x

r = 100, n = 500
0.1958 1.8229 -0.0023 1.0294 6.2427 1.8226 -0.0251 0.9976 6.2461

AE 0.0042 0.0771 0.1023 0.0199 0.0073 0.0774 0.1251 0.0517 0.0039
RE 0.0210 0.0406 1.0230 0.0190 0.0012 0.0407 1.2510 0.0493 0.0006

MSE 0.0021 0.0149 0.2123 0.0026 0.1609 0.0160 0.1802 0.0042 0.0105
r = 100, n = 1000

0.1982 1.8585 0.0204 1.0385 6.2448 1.8537 -0.0293 1.0122 6.2535
AE 0.0018 0.0415 0.0796 0.0108 0.0052 0.0463 0.1293 0.0371 0.0035
RE 0.0090 0.0218 0.7960 0.0103 0.0008 0.0244 1.2930 0.0354 0.0006

MSE 0.0008 0.0067 0.2197 0.0016 0.0665 0.0070 0.2391 0.0028 0.0073
r = 100, n = 10000

0.1994 1.8992 0.1104 1.0465 6.2476 1.9030 0.1252 1.0248 6.2534
AE 0.0006 0.0008 0.0104 0.0028 0.0024 0.0030 0.0252 0.0245 0.0034
RE 0.0030 0.0004 0.1040 0.0027 0.0004 0.0016 0.2520 0.0233 0.0005

MSE 0.0001 0.0010 0.0322 0.0001 0.0083 0.0011 0.0446 0.0007 0.0005

Table 8: For λ = 0.2 as autoregressive parameter and αz = 1.9, βz = 0.1, σz =
1, mz = 5 as theoretical parameters of the distribution S(αz, βz, σz,mz) of the
innovations.
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AR(1): Xn = 0.8Xn−1 + Zn

Theoretical values of S(α, βx, σx,mx)
α βx σx mx

1.2000 0.1000 4.2568 25.0000

Estimated values via {Ẑk} Estimated values directly on {Xk}
λ̂ α̂ β̂x σ̂x m̂x α̃ β̃x σ̃x m̃x

r = 100, n = 500
0.7952 1.2095 0.0948 4.1450 24.5708 1.1702 0.0196 3.2878 25.5873

AE 0.0048 0.0095 0.0052 0.1118 0.4292 0.0298 0.0804 0.9690 0.5873
RE 0.0060 0.0079 0.0520 0.0263 0.0172 0.0248 0.8040 0.2276 0.0235

MSE 0.0002 0.0065 0.0162 0.1356 3.8544 0.0167 0.0953 1.1907 0.8200
r = 100, n = 1000

0.7973 1.1987 0.0995 4.2682 24.8799 1.1925 0.0552 3.3553 25.4914
AE 0.0027 0.0013 0.0005 0.0114 0.1201 0.0075 0.0448 0.9015 0.4914
RE 0.0034 0.0011 0.0050 0.0027 0.0048 0.0063 0.4480 0.2118 0.0197

MSE 0.0004 0.0026 0.0088 0.1774 4.7007 0.0170 0.0469 0.9329 0.4337
r = 100, n = 10000

0.7994 1.2039 0.0983 4.2405 24.9527 1.1908 0.0967 3.3517 25.5133
AE 0.0006 0.0039 0.0017 0.0163 0.0473 0.0092 0.0033 0.9051 0.5133
RE 0.0008 0.0033 0.0170 0.0038 0.0019 0.0077 0.0330 0.2126 0.0205

MSE 1 e -5 0.0002 0.0008 0.0136 0.2231 0.0019 0.0061 0.8315 0.2843

Table 9: For λ = 0.8 as autoregressive parameter and αz = 1.2, βz = 0.1, σz =
1, mz = 5 as theoretical parameters of the distribution S(αz, βz, σz,mz) of the
innovations.
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AR(1): Xn = 0.95Xn−1 + Zn

Theoretical values of S(α, βx, σx,mx)
α βx σx mx

1.8000 0.1000 11.3387 100.0000

Estimated values via {Ẑk} Estimated values directly on {Xk}
λ̂ α̂ β̂x σ̂x m̂x α̃ β̃x σ̃x m̃x

r = 100, n = 500
0.9492 1.7894 -0.0220 11.1422 98.5418 1.0812 -0.5964 3.4889 100.3163

AE 0.0008 0.0106 0.1220 0.1965 1.4582 0.7188 0.6964 7.8498 0.3163
RE 0.0008 0.0059 1.2200 0.0173 0.0146 0.3993 6.9640 0.6923 0.0032

MSE 2 e -06 0.0091 0.2530 1.2581 86.0316 0.5324 0.5050 62.2254 3.7460
r = 100, n = 1000

0.9485 1.7881 0.1187 11.0354 97.9825 1.5039 -0.3852 3.8257 100.3365
AE 0.0015 0.0119 0.0187 0.3033 2.0175 0.2961 0.4852 7.5130 0.3365
RE 0.0016 0.0066 0.1870 0.0267 0.0202 0.1645 4.8520 0.6626 0.0034

MSE 2 e - 06 0.0081 0.0900 1.4021 95.7969 0.1270 0.0355 56.6745 1.6978
r = 100, n = 10000

0.9495 0.1986 0.0963 16.7515 99.3161 1.1949 0.0780 10.3695 102.8581
AE 0.0005 1.6014 0.0037 5.4128 0.6839 0.6051 0.0220 0.9692 2.8581
RE 0.0005 0.8897 0.0370 0.4774 0.0068 0.3362 0.2200 0.0855 0.0286

MSE 6 e - 06 0.0004 0.0007 0.7132 20.7651 0.0058 0.0247 41.1379 8.8514

Table 10: For λ = 0.95 as autoregressive parameter and αz = 1.8, βz = 0.1, σz =
1, mz = 5 as theoretical parameters of the distribution S(αz, βz, σz,mz) of the
innovations.
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