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ABSTRACT. Often a Bayesian network (BN) contains discrete and con-
tinuous random variables. Discretizing the continuous variables mean that if
the possible values of the node are n ranges than the probability of each of
these ranges is specified in the network. Many BN inference packages allow
the user to specify the both continuous variables and discrete variables in the
same network. We can sometimes obtain simpler and better inference results
by representing the variables as discrete. One reason for this is that, if we
discretize the variables, we do not need to assume any particular continuous
probability density function. In this paper we will present two methods for
discretizing continuous variables within the BN: Bracket Medians Method and
Pearson-Tukey Method.
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1. INTRODUCTION
A. Probability Spaces
Definitions:
Suppose we have a sample space containing n distinct elements: that is,

Q={ey,e9,..,e,}

A function that assigns a real number P(E) to each event E is called a proba-
bility function on the set of subsets of if satisfies the following conditions:

1. 0< P(e;) <1, forl <i<m;2 Ple))+ Ples) + ...+ Ple,) = 1.

3. For each event that is not an elementary event, P(E) is the sum of the
probabilities of the elementary events whose outcomes are in E.

433



M.D. Craciun, V. Chig, C. Bala - Methods for discretizing continuous...

The pair (2, P) is called probability space.
The most straightforward way to assign probabilities is to use the Principle of
Indifference, which says that outcomes are to be equiprobable if we have no
reason to expect one over the other. According to this principle, when there
are n elementary events, each has probability equal to 1/n.

Let E and F be events such that P(F') # 0. Then the conditional probability
of E given F, denoted P(FE|F), is given by:

P(ENF
P(E|F) - (p(% )

Theorem:

Let (€2, P) be a probability space. Then:

1. P(Q)=1;2. 0< P(E) <1, foreveryE C Q

3. ForeverytwosubsetsEandFofQsuchthatE N F = (),

P(EUF) = P(E)+ P(F)

where () denotes the empty space.

B. Random variables

Definitions:

Given a probability space (€2, P), a random variable X is a function whose
domain is €.

The range of X is called the space of X.

We call P(X = x) the probability distribution of the random variable X.

C. Bayesian Network - BN

Bayesian networks - BN consist of:

- a direct acyclic graph (DAG), whose edges represent relationships among
random variables that are often (but not always) causal;

- the prior probability distribution of every variable that is a root in the DAG;
- the conditional probability distribution of every non-root variable given each
set, of values of its parents.

D. Variance and Covariance

Definitions:
Suppose we have a discrete numeric random variable X, whose space is
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{Il) T2y ey l‘n}
Then the variance Var (X) is given by
Var(X) = E([X - E(X)P)

Suppose we have two discrete numeric random variables X and Y. Then the
covariance Cov(X,Y) of X and Y is given by

Cov(X,Y) = E([X — E(X)][Y — E(Y)])

E. Disrectizing

Let be a BN that contains random variables that are discrete or continuous.
For the continuous variable the possible values of the node are ranges and the
probability of each of these ranges is specified in the network. This is called
discretizing the continuous variables.

2.METHODS FOR DISCRETIZING

A. Bracket Medians Method

In the Bracket Medians Method the mass in a continuous probability distribu-
tion function F'(z) = P(X < z) is divided into n equally spaced intervals. The
method proceeds as follows. Typically we can use three, four ore five intervals.
If we have more intervals, the computation is more accurate. Let be n=5 in
this explanation.

1. Determine n equally spaced intervals in the interval [0, 1]. If n=>5, the
intervals are: [0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8] and [0.8, 1].

2. Determine points z1, x9, T3, 4, r5 and xg such that:

where the values on the right in these equalities are the endpoints of the five
intervals.

3. For each interval [z;, x;11] compute the bracket median d;, which is the
value such that

4. Define the discrete variable D with the following probabilities:
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P(D =d;) =0.2,P(D = dy) = 0.2
P(D =ds) =0.2,P(D = dy) = 0.2, P(D = ds) = 0.2

B. Pearson-Tukey Method

In the Pearson-Tukey Method the mass in a continuous probability distribu-
tion function F(x) = P(X < z) is divided into three intervals. The method
proceeds as follows:

1. Determine points x1, x5 and x3 such that

P(X <z7) =0.05, P(X <) =050, P(X < z3) =0.95
2. Define the discrete variable D with the following probabilities:
P(D =) =0.185, P(D = z3) = 0.63, P(D = z3) = 0.185
3.APPLYING THE DISCRETIZING METHODS

Let be the BN for detecting credit card fraud, see the Figure 1.

A. Bracket Medians Method
Suppose we have the normal distribution function given by
> with(Statistics); X := RandomV ariabile(Normal(u,?)); PDF (X, x)

2

_1(z—p)
l \/56 2 o2
2 Vo

where, > Mean(X) represent p and > Variance(X) represent o>
and the cumulative distribution function for this density function is given by
> with(Statistics); Cumulative Distribution Function(Normal(u, ), z)

L~ fer (32t
> Cumulative Distribution Function(Normal(u, Q2), x, numeric)
This functions for © = 50 and ¢ = 15 are shown in Figure 2 and 3. This might

be the distribution of age for some particular population.
> with(Statistics); X := RandomV ariabile(Normal(50,15)); PDF(X, x)
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FiA=<30)= .25
AF = yes) = 00001 PA=30t 50)=40 AS=male)=5
FAF = no) = 59539 AA=>50)= 35 AS = femala) = 5
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AG=yes | F=yes)= .2 AJ=yes| F=yes, A=a S=35) =05
AlG=nolF=yes)=8 Pl=npalF=yes, A=a S=5 =95

P(G=yes | F=na}=.01

PG =10 IF = no) = 99 A= yes | Fano, Aw <30, 5= male) = 0001

Pid=no ! F=no, A =<30, §=malg) = 9989

A =yes | F=no, A=<30 5="femalke) = .0005
Fid=no{ F=no, A =<30, &=femala)= 9995

AlJ=yas | F=no, A=13010 50, 5=male) = 0004
PiJ=no ! F=no, A= 301050 5=male)= 0006

AJ=yes | F=no, A=13010 50, 5=femala)= 002
Pl =nolF=no, A= 301250, 5 =lemale) =~ 998

Pld=yes| F=no, 4==> 50, 5=malk) = 0002
PlJ=nolF=no, A=>580 8=male) = 9998

Pl =yes | F=no, A= =50, 5=female) = .001
Fid=noiF=no, A=2x>80 5=female) = 999

Figure 1: BN for detecting credit card fraud

1 ﬂefﬁ(zfmﬁ
30 NG

> smartplot(PDF (X, z))

> Cumulative Distribution Function(Normal (50, 15), z, numeric)

> smartplot(PDF (X, x))

Next we use the Bracket Medians Method to discretize it into three ranges.
Then n=3 and our four steps are as follows:

1. Since there is essentially no mass less then 0 and greater then 100, our three
intervals are [0, .333], [.333, .666] and [.666, 1].

2. We need to find points x1, 9, x3 and x4 such that
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Figure 2: NDF with 4 =50 and o = 15

P(X <z1) =0.0, P(X <) =0.333, P(X < z3) =0.666, P(X < x4) = 1.
Clearly, 1 = 0 and x4 = 100. To determine x5 we need to determine
Ty = F71(0.333)

Using Maple, we have:
> T := Normal(50,15)); X := RandomV ariable(T); CDF(X,t)

T := Normal(50,15)
X = R6
5+ serf(ztv2 — 3v2)

> InverseSurvival Function(X,t)
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Figure 3: CDF with p =50 and 0 = 15

5(5v2 + 3RootOf(erf(Z) — 1 4 2t))v/2
> InverseSurvival Function(X,1 — 0.333)

43.525336409240651

Similarly,
> InverseSurvival Function(X, 1 — 0.333)

56.433417561113032
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3. Compute the bracket medians. We compute them using Maple by solving
the following equations:

> Cumulative Distribution Function(Normal(50, 15),d;) =
Cumulative Distribution F'unction(Normal (50, 15),43.5) —
Cumulative Distribution Function(Normal(50,15), dy)

L Lo f(Ldi/2 — 34/2) = —0.1676136874
—%erf(%dl\/i— g\/i)
solve([dy])

[[d1 = 35.46022283]]
Solution is d; = 35.5

> Cumulative Distribution Function(Normal (50, 15), d2) —
Cumulative Distribution Function(Normal (50, 15),43.5) =
Cumulative Distribution Function(Normal(50,15),56.4) —
Cumulative Distribution Function(Normal (50, 15), ds)

0.1676136874 + Lerf(s5dav/2 — 21/2) = 0.1651889337
—serf(55d2v2 — 2V/2)
solve([ds))

[[d2 = 49.95441526]]
Solution is d; = 50.0

> Cumulative Distribution Function(Normal(50,15), d3) —
Cumulative Distribution Function(Normal(50,15),56.4) =
1 — Cumulative Distribution Function(Normal (50, 15), ds)

—0.1651889337 + Ler f(Adsv/Z — 2v2) = L
—%erf(%dgﬁ - %\/5)
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solve([ds])
[[d3 = 64.46702832]]
Solution is d3 = 64.5

4. Finally, we set
P(D = 35.5) = 0.333, P(D = 50.0) = 0.333, P(D = 64.5) = 0.333

The variable D requires a numeric value if we need to perform computations
using it. However, if the variable does not require a numeric value for compu-
tational purposes, we need to perform Step3 in the Bracket Medians Method.
We just show ranges as the values of D. In the pervious example, we would set

P(D <43.5) =0.333, P(D = 43.5 to 56.4) = 0.333, P(D > 56.4) = 0.333

This example is what we did for the node Age in the BN in Figure 1. In this
case, if a data item’s continuous value is between 0 and 43.5, we simply assign
the data item that range.

B. Pearson-Tukey Method
Suppose we have the normal distribution [6] discussed by the Bracket Medians
Method. Next, we apply the Pearson-Tukey Method to that distribution. 1.

Using Maple, we have
> T := Normal(50,15)); X := RandomV ariable(T); CDF(X,t)

T := Normal(50, 15)
X =R
L lerf(&tvV2—3V2)

> InverseSurvival Function(X,t)
5(5v/2 + 3RootOf (er f(Z) — 1+ 2t))v/2
> InverseSurvival Function(X,1 — 0.05)
25.327195595717995

Solution is x; = 25.3.
> InverseSurvival Function(X, 0.50)

441



M.D. Craciun, V. Chig, C. Bala - Methods for discretizing continuous...

20.

Solution is xs = 50.
> InverseSurvival Function(X,1 — 0.95)

74.672804404281990

Solution is x3 = 74.7.

2. We set
P(D =25.3) =0.185, P(D = 50.0) = 0.63, P(D = 74.7) = 0.185

To assign data items discrete values, we need to determine the range of values
corresponding to each of the cutoff points. That is, we compute the following:

> InverseSurvival Function(X, 1 — 0.185)
36.552899539965821

> InverseSurvival Function(X,0.185)
63.447100460034178

If data item’s continues value is less the 36.6, we assign the data item the
value 25.3; if the value is in [36.5, 63.4], we assign the value 50; and if the value
is greater then 63.4, we assign the value 74.7.

If the variable does not required a numeric value for computational pur-
poses, we need to perform Steps 1 and 2, but rather just determine the range
of values corresponding to each of the cutoff points and just show ranges as
the values of D. In our example, we would set

P(D < 36.6) = 0.185, P(D = 36.6 to 63.4) = 0.63, P(D > 63.4) = 0.185

In this case if a data item’s continuous value is between 0 and 36.6, we
simply assign the data item that range.

4.CONCLUSION
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We observe that, when we used the Pearson-Tukey Method, the middle
discrete value represented numbers in the interval [36.6, 63.4], while when we
used the Bracket Median Method, the middle discrete value represented num-
bers in the interval [43.5, 56.4]. The interval for the Pearson-Tukey Method is
larger, meaning more numbers in the middle are treated as the same discrete
value, and the other two discrete values represent values only in the tails.
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