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ON THE LAGRANGIAN FORMALISM AND THE STABILITY
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Abstract. In this paper we consider a dynamical system which represents
the model of the airplane flight in the vertical plane. The aim of this paper
is to make some geometrical studies of the direct and inverse problems with
concrete applications in the dynamical systems. It is studied the Lagrangian
formalism for the inverse problem and we find a Lagrangian associated to this
dynamical system. Next, we present some direct methods for the study of the
stability of this dynamical system and we give the phase portraits.
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1.Introduction

We consider the mathematical model of the airplane flight in the vertical
plane and we make some geometrical studies of the direct and inverse problems
with concrete applications in the dynamical systems, [3, 5].

The flight regime is followed for the vertical plane for fixed direction and
constant speed. In the vertical plane, will always act on the airplane the
gravitational force ~G, the bearing force ~P , traction forces ~T and drag forces ~R.
The course will be on a fixed direction (horizontal, oblique) and due to small
perturbations of the velocity and angle of flight occurs a pitch that destabilized
the plane. We apply the classical stability criteria that will condition the
parameters of this system to obtain a dynamic stability of the airplane.

The equation of motion is of the form:

m
.

~v= ~T + ~G + ~R, (1)
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where m is the mass of the airplane, v is the speed, ~T is the traction
force, ~G = m~g is the gravitational force, ~R is the resultant of aerodynamic
forces. The resultant ~R has a decomposition into two forces, namely in the
bearing force ~P and in the drag force ~D. Here we will consider the projection
of equation (1) onto tangent and normal to the trajectory in the hypothesis

that the airplane has an inertial movement with ~T = ~0 and the resultant is
proportional with v2; CD and CL are the resistance and bearing coefficients,
and the angle is very small.

m
.
v= −mg sin θ − CDv2 (2)

mv
.

θ= −mg cos θ + CLv2 (3)

Figure 1: The flight of the airplane

Denoting as v2
0 = mg

CL
, τ = gt, V = v

v0
and a = CD

CL
, then from (2) and (3)

we obtain, with respect to the new time variable τ , the following equivalent
system:
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
.

V = − sin θ − aV 2

.

θ = V 2−cos θ
V

.

(4)

Here v0 is the flight inertial speed in the horizontal plane when the bearing
force is equilibrated with the weight force in (3), with θ = 0 and a ≥ 0.

With respect to a we have the following two situations:

I) a = 0, horizontal flight with negligible resistance force (CD ≈ 0).

II) a > 0 and CD 6= 0, dropping or raising on constant direction in the
vertical plane.

In the following sections we study the Lagrangian formalism of the dy-
namical system from (4) in the case I) (a = 0), and we present some direct
methods for the study of stability of this dynamical system and we give the
phase portraits, in both cases.

2.The Lagrangian formalism

Let us briefly recall the Lagrangian formalism of dynamical systems for the
inverse problem, (see [7, 8] and [11]).

Let
.
x= f(t, x), x, f ∈ Rn, t ∈ R (5)

be a dynamical system. We are interested to find the conditions for which the
system (5) admits the variational principle, namely, there are the functions
Ai(t, x), B(t, x) such that the Euler-Lagrange equations system associated to
the Lagrangian

L :=
∑

i

Ai(t, x)
.
xi +B(t, x)

is equivalent to the system (5).

We have that d
dt

(
∂L
∂

.
xi

)
− ∂L

∂xi
= 0, i = 1, . . . , n or

n∑
j=1

(
∂Ai

∂xj

− ∂Aj

∂xi

)
.
xj +

∂Ai

∂t
− ∂B

∂xi

= 0, i = 1, . . . , n (6)
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must be equivalent to (5). If we denote by

Cij =
∂Ai

∂xj

− ∂Aj

∂xi

, Di =
∂Ai

∂t
− ∂B

∂xi

(7)

we get the system
n∑

j=1

Cij
.
xj +Di = 0, i = 1, . . . , n. (8)

We are interested to find necessary and sufficient conditions such that a system
written by (8) to be equivalent with (6), namely there exist Ai and B which
verify the conditions (7). For this, let us consider the differential 1-form ϕ =∑

i Aidxi + Bdt and its exterior derivative

dϕ = =
1

2

∑
i,j

(
∂Ai

∂xj

− ∂Aj

∂xi

)
dxi ∧ dxj +

∑
i

(
∂Ai

∂t
− ∂B

∂xi

)
dxi ∧ dt

=
1

2

∑
i,j

Cijdxi ∧ dxj +
∑

i

Didxi ∧ dt.

So, denoting Ω := dϕ it follows that for the system (8) there exist Ai and B
such that the conditions (7) are fulfilled if and only if there exists an 1-form ϕ
such that Ω = dϕ. From Poincaré Lemma is necessary and sufficient to have
dΩ = 0, namely 

Cij + Cji = 0

∂Cij

∂xk
+

∂Cjk

∂xi
+ ∂Cki

∂xj
= 0

∂Cij

∂t
= ∂Di

∂xj
− ∂Dj

∂xi
,

(9)

called the autoadjoint conditions. If the system (8) verifies the conditions (9),
then it comes from a Lagrangian.

We consider now an antisymmetric integrant factor Cij for the initial system
(5). Then it results that∑

j

Cij(
.
xj −fj) = 0 or

∑
j

Cij
.
xj +Di = 0,

where Di = −
∑

j Cijfj. If n is even and there is a matrix (Cij) which verifies
the autoadjoint conditions (9), then the dynamical system (5) admits the vari-
ational principle. The condition for n to be even is necessary because when n
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is odd we have det C = 0 and in this case the integrant factor is noninvertible
and the obtained system is not equivalent to the initial system.

We apply now the method presented above for the dynamical system from
(4) in the case when we have negligible resistance force (a = 0), and we find a
Lagrangian associated to this system.

Let C =

(
0 C
−C 0

)
be an antisymmetric integrant factor for the dynam-

ical system from (4), where C = C(τ, V, θ). Multiplying the system with this
factor we get 

C
( .

θ −V 2−cos θ
V

)
= 0

−C
( .

V + sin θ
)

= 0 .

(10)

The autoadjoint conditions in this case are given be

∂C

∂τ
− sin θ

∂C

∂V
+

V 2 − cos θ

V

∂C

∂θ
+ C

sin θ

V
= 0. (11)

Considering C = C(V ) we get− sin θ ∂C
∂V

+C sin θ
V

= 0. The associated symmetric
system of this cvasilinear partial differential equation is dV

V
= dC

C
with the

solution C = kV .
Taking k = 1, it follows that C = V is an integrant factor for the our

dynamical system. Now, from easy calculations we obtain

A1 = θ(V + 1) , A2 = V and B =
V 3

3
− V cos θ.

Thus,

L = θ(V + 1)
.

V +V
.

θ +
V 3

3
− V cos θ (12)

is an associated Lagrangian and the dynamical system (4) (the case a = 0) is
just the Euler-Lagrange equations system associated to this Lagrangian.

3.The study of stability

Case I) a = 0 (the negligible resistance).

In this case the system becomes [1, 2, 5, 9]:
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
V̇ = − sin θ

θ̇ = V 2−cos θ
V

, V = V (τ), θ = θ(τ), τ ≥ 0. (13)

The critical points (equilibrium points) from (13) are

{V ∗ = 1, θ∗ = 0} . (14)

If the flight is constant then V ∗ = v0, if it is horizontal then θ∗ = 0 .

Figure 2: The horizontal flight of the airplane

From (13) we obtain

dV

dθ
= − V sin θ

V 2 − cos θ
(15)

with singular points V = 0, θ = ±π
2

.

We’ll study the stability of the point P ∗(V ∗ = 1, θ∗ = 0). The system
is nonlinear and we’ll determine a Liapunov function W = W (V, θ), posi-
tive defined W (1, 0) = 0, W (V, θ) > 0 in the neighborhood of P ∗ such that
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Ẇ (1, 0) = 0 and Ẇ (V, θ) ≤ 0 . The system (15) is with the total differential
W = W (V, θ). So, we have

dW = (V 2 − cos θ)dV + V sin θdθ, (16)

W (V, θ) =
V 3

3
− V cos θ + C. (17)

The constant is C = −2
3

from W (1, 0) = 0 and so we have the Liapunov
function

W (V, θ) =
V 3

3
− V cos θ − 2

3
. (18)

Taking into account of Silvester determinants is obtain W (V, θ) > 0 and
dW
dτ

= 0 because W (V, θ) = ct is a prime integral. So, the point P ∗(V ∗ =
1, θ∗ = 0) is a centrum - the flight regime is simple stable, this mean that at
lower perturbation the trajectories are closed and oscillate around of P ∗ in the
phases plane. Analysing the values of the constant C and W = W (V, θ, C)
(the perturbed energy) we’ll obtain in the physical plane (xOz) the perturbed
flight trajectories compared with the horizontal flight. ( Ox - the horizontal
axis, Oz - the vertical axis). The components of velocity on the (xOz) system
are

vx =
dx

dt
= v cos θ, vz =

dz

dt
= v sin θ. (19)

Replacing in (2) with CD = 0, sin θ = ż
v

we obtain the theorem of energy

1

2
v2 = −gz + c. (20)

For the initial conditions z = 0, v = 0, c = 0, we obtain

z = −v2
0

V 2

2g
, V =

1

v0

√
−2gz. (21)

Replacing the (21) in (2), we have

cos θ = −2

3

gz

v2
0

− Cv0√
−2gz

= h(z, C). (22)
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But, from dz
dx

= tgθ taking account by (22) it is obtained tgθ = − 1√
1+h2(z,C)

dx =
dz

tgθ
=

dz

f(z, C)
. (23)

By integration it is obtained the trajectory in the (xOz) plane, F (x, z, C, k) =
0. The function f(z, C) isn’t generally an elementary one and the study is made

for C ≥ −2
3

. Thus C = −2
3
, cos θ = 1, z = −v2

0

2g
, means that on the Oz axis the

flight is constant, with constant speed v0, θ = 0, and at lower perturbations

the trajectory is oscillating in comparison with the height H =
v2
0

2g
.

For C = 0 integrating the relation (23) we observe that the trajectories are

arcs (x − k)2 + z2 = 9
4

v4
0

g2 which represent the separation curve −2
3

< C < 0.

Thus for C = −1
3

we have the periodical curves with points of return. For
higher speeds v0 at perturbations C = 2

3
the trajectories are periodical loop-

ings compared with the horizontal flight.

Figure 3: The trajectories of the airplane flight

Case II) a 6= 0.

We study the stability in first approximation for the system (4).
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To find the equilibrium points we solve the system
− sin θ − aV 2 = 0

V 2−cos θ
V

= 0.

It is obtained: P ∗(θ∗, V ∗) ≡ P ∗
(
−arctga, 4

√
1

1+a2

)
.

To have an equilibrium in the (0, 0) point we make the substitution: Θ =
θ − θ∗, W = V − V ∗. It is obtained the system

.

W = − 2a
4√1+a2

W − 1√
1+a2 Θ

.

Θ = 2W − a
4√1+a2

Θ

(24)

and the characteristical equation is: λ2 + 3a
4√1+a2

λ + 2
√

1 + a2 = 0.

• If a2 − 8<0, a ∈ (0, 2
√

2) ⇒ λ1,2 ∈ C\R, with Re(λ1,2) < 0 then the
point is an attractive focal.

• If a = 2
√

2 ⇒ λ1 = λ2 = −−3
√

2√
3

then the point is attractive degenerated.

• If a > 2
√

2 ⇒ λ1,2 ∈ R− then the point is an attractive degenerated
node.

So, with this method in first approximation we have the asymptotic sta-
bility and the airplane goes down with the oscillations at constant speed

V ∗ = 4

√
1

1+a2 and it is stabilized on the inclined line θ∗ = −arctga . For

higer speeds, at perturbations the airplane executes some loopings and then is
asymptotically stabilized.
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Figure 4: The loopings of the airplane
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The West University of Timişoara, 1989, (in Romanian).
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West University of Timişoara, 1992, (in Romanian).

368



C. Ida, O. Florea - On the Lagrangian formalism and the stability...

[9] Rasvan, Vl., Theory of Stability, Ed. St. Enciclopedica, Bucuresti, 1987,
(in Romanian).

[10] Teschl, G., Ordinary Diferential Equations and Dynamical Systems,
AMS Providence, Rhode Island, Graduate Studies in Mathematics Volume
XXX Version: May 30, 2011.

[11] Vernic, C., Analytical methods for the study of biodynamical systems,
Phd Thesis, The West University of Timişoara, 2002, (in Romanian).

Cristian Ida ,Olivia Florea
Department of Mathematics and Informatics
Transilvania University of Braşov
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