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GRAPHS WITH F -SYMMETRIC INDEPENDENCE
POLYNOMIALS

Vadim E. Levit and Eugen Mandrescu

Abstract. An independent set in a graph is a set of pairwise non-adjacent
vertices, and α(G) is the size of a maximum independent set in the graph G.

If sk is the number of independent sets of cardinality k in G, then

I(G; x) = s0 + s1x + s2x
2 + ... + sαxα, α = α (G) ,

is called the independence polynomial of G (I. Gutman and F. Harary, 1983).
If sα−i = f (i) · sα−j holds for every i ∈ {0, 1, ..., bα/2c}, then I(G; x) is

called f -symmetric. The corona of the graphs G and H is the graph G ◦ H
obtained by joining each vertex of G to all the vertices of a copy of H.

In this paper we show that for every graph G, the independence polynomial
of G ◦ (Kp ∪Kq) is f -symmetric, where

f (i) = (pq)
α
2
−i , 0 ≤ i ≤

⌊
α

2

⌋
, α = α (G ◦ (Kp ∪Kq)) .

In particular, we deduce a result of Stevanović [20], claiming that I (G ◦ 2K1; x)
is symmetric, i.e., sα−i = sα−j holds for every i ∈ {0, 1, ..., bα (G ◦ 2K1) /2c}.

Key words: independent set, independence polynomial, symmetric polyno-
mial.
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1. Introduction

Throughout this paper G = (V, E) is a simple (i.e., a finite, undirected,
loopless and without multiple edges) graph with vertex set V = V (G) and
edge set E = E(G). If X ⊂ V , then G[X] is the subgraph of G spanned by X.
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By G − W we mean the subgraph G[V − W ], if W ⊂ V (G). We also denote
by G − F the partial subgraph of G obtained by deleting the edges of F , for
F ⊂ E(G), and we write shortly G− e, whenever F = {e}. The neighborhood
of a vertex v ∈ V is the set NG(v) = {w : w ∈ V and vw ∈ E}, and
NG[v] = NG(v) ∪ {v}; if there is no ambiguity on G, we use N(v) and N [v],
respectively. Kn, Pn, Cn denote respectively, the complete graph on n ≥ 1
vertices, the chordless path on n ≥ 1 vertices, and the chordless cycle on n ≥ 3
vertices.

The disjoint union of the graphs G1, G2 is the graph G = G1 ∪G2 having
as vertex set the disjoint union of V (G1), V (G2), and as edge set the disjoint
union of E(G1), E(G2). In particular, nG denotes the disjoint union of n > 1
copies of the graph G.

The Zykov sum of the disjoint graphs G1, G2 is the graph G1 + G2 with
V (G1) ∪ V (G2) as a vertex set and

E(G1) ∪ E(G2) ∪ {v1v2 : v1 ∈ V (G1), v2 ∈ V (G2)}

as an edge set [22].
The corona of the graphs G and H is the graph G ◦ H obtained from G

and |V (G)| copies of H, such that each vertex of G is joined to all vertices of
a copy of H [3].

An independent (or a stable) set in G is a set of pairwise non-adjacent
vertices. An independent set of maximum size will be referred to as a maximum
independent set of G, and the independence number of G, denoted by α(G), is
the cardinality of a maximum independent set in G, and ω(G) = α(G), where
G is the complement of G.

Let sk be the number of independent sets of size k in a graph G. The
polynomial

I(G; x) = s0 + s1x + s2x
2 + ... + sαxα, α = α (G) ,

is called the independence polynomial of G [4]. For a survey on independence
polynomials of graphs, see [12].

Independence polynomial was defined as a generalization of matching poly-
nomial of a graph, because the matching polynomial of a graph G and the
independence polynomial of its line graph are identical. Recall that given a
graph G, its line graph L(G) is the graph whose vertex set is the edge set of
G, and two vertices are adjacent if they share an end in G.
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Figure 1: G2 is the line-graph of and G1.

For instance, the graphs G1 and G2 depicted in Figure 1 satisfy G2 = L(G1)
and, hence

I(G2; x) = 1 + 6x + 7x2 + x3 = M(G1; x),

where M(G1; x) is the matching polynomial of the graph G1. Some basic
procedures to compute the independence polynomial of a graph are recalled in
the following result.

Theorem 1 [4] (i) I(G1 ∪G2; x) = I(G1; x) · I(G2; x);
(ii) I(G1 + G2; x) = I(G1; x) + I(G2; x)− 1;
(iii) I(G; x) = I(G− v; x) + x · I(G−N [v]; x) holds for every v ∈ V (G).

A finite sequence of real numbers (a0, a1, a2, ..., an) is said to be:

• unimodal if there exists an index k ∈ {0, 1, ..., n}, called the mode of the
sequence, such that

a0 ≤ ... ≤ ak−1 ≤ ak ≥ ak+1 ≥ ... ≥ an;

• log-concave if a2
i ≥ ai−1 · ai+1 for i ∈ {1, 2, ..., n− 1};

• f -symmetric if an−i = f (i) · ai for all i ∈ {0, ..., bn/2c};

• symmetric (or palindromic) if ai = an−i, i = 0, 1, ..., bn/2c, i.e., f (i) = 1
for all i ∈ {0, ..., bn/2c}.

It is known that every log-concave sequence of positive numbers is also
unimodal.

A polynomial is called unimodal (log-concave, symmetric, f -symmetric) if
the sequence of its coefficients is unimodal (log-concave, symmetric, and f -
symmetric, respectively).

187



V.E. Levit, E. Mandrescu - f -Symmetric independence polynomials

Alavi, Malde, Schwenk and Erdös [1] proved that for every permutation π
of {1, 2, ..., α} there is a graph G with α(G) = α such that

sπ(1) < sπ(2) < ... < sπ(α).

For instance, the independence polynomial

• I(K42 + 3K7; x) = 1 + 63x + 147x2 + 343x3 is log-concave;

• I(K43 + 3K7; x) = 1 + 64x + 147x2 + 343x3 is unimodal, but non-log-
concave, because 147 · 147− 64 · 343 = −343 < 0;

• I(K127 + 3K7; x) = 1 + 148x + 147x2 + 343x3 is non-unimodal;

• I(K18 + 3K3 + 4K1; x) = 1 + 31x + 33x2 + 31x3 + x4 is symmetric and
unimodal;

• I(K52 + 3K4 + 4K1; x) = 1 + 68x + 54x2 + 68x3 + x4 is symmetric and
non-unimodal;

• I(K1832 +4K7 +(K2∪K539)+5K1; x) = 1+2406x+1382x2 +1382x3 +
2406x4 + x5 is palindromic and non-unimodal.

• I (P3 ◦ (K2 ∪K1) ; x) = 1 + 12x + 52x2 + 105x3 + 104x4 + 48x5 + 8x6 is
f -symmetric for f(i) = 23−i, 0 ≤ i ≤ 3.

It is easy to see that:

• if α(G) ≤ 3 and I(G; x) is symmetric, then it is also log-concave;

• if α(G) = 4 and I(G; x) is symmetric and unimodal, then it is log-concave
as well.

For other examples, see [1], [9], [10], [11], [13], [15], [19], and [21].

Theorem 2 [6] I (G ◦H; x) = (I (H; x))n • I
(
G; x

I(H;x)

)
, where n = |V (G)|.

The symmetry of matching polynomial and characteristic polynomial of a
graph were examined in [8], while for independence polynomial we quote [7],
[20], [14], [16], and [18].
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Figure 2: G and H1 = G ◦H, where H = 2K1.

It is worth mentioning that one can produce graphs with symmetric inde-
pendence polynomials by different ways [2], [5], [20], [18]. For an example, see
Figure 2, where I(G; x) = 1 + 6x + 9x2 + 2x3, while

I(H1; x) = (1 + x)6
(
1 + 12x + 48x2 + 76x3 + 48x4 + 12x5 + x6

)
=

= 1 + 18x + 135x2 + 564x3 + 1479x4 + 2586x5 + 3106x6+

+ 2586x7 + 1479x8 + 564x9 + 135x10 + 18x11 + x12.

In this paper we show that the independence polynomial of the graph G ◦
(Kp ∪Kq) is f -symmetric. As a corollary it gives a theorem due to Stevanović
claiming that I (G ◦ 2K1; x) is symmetric for every graph G [20].

2. Results

It is well-known that a polynomial P (x) is symmetric if and only if the following
equality holds

P (x) = xdeg(P ) · P
(

1

x

)
.

Similarly, we have the following.

Lemma 3 If P (x) =
2n∑
i=0

aix
i is a polynomial of degree 2n, then

P (x) = cn · x2n · P
(

1

cx

)
if and only if a2n−i = cn−i · ai, 0 ≤ i ≤ n.

Proof. Since

cn · x2n · P
(

1

cx

)
= cn · x2n ·

2n∑
i=0

ai

(cx)i =
2n∑
i=0

cn−i · ai · x2n−i =
2n∑
i=0

ci−n · a2n−i · xi,
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we infer that

P (x) = cn · x2n · P
(

1

cx

)
⇔ ai = ci−n · a2n−i ⇔ a2n−i = cn−i · ai, 0 ≤ i ≤ n,

and this completes the proof.

Theorem 4 The polynomial I (G ◦ (Kp ∪Kq) ; x) is f -symmetric, with

f (i) = (pq)
α
2
−i , 0 ≤ i ≤ α

2
, where α = α (G ◦ (Kp ∪Kq)) ,

i.e., the coefficients (si) of I (G ◦ (Kp ∪Kq) ; x) satisfy

sα−i = (pq)
α
2
−i · si, 0 ≤ i ≤ α

2
.

Proof. Firstly, we have that

I (Kp ∪Kq; x) = 1 + ax + bx2,

where a = p + q and b = pq.
Secondly, by Theorem 2, we get that

I (G ◦ (Kp ∪Kq) ; x) =
(
1 + ax + bx2

)n
· I
(
G;

x

1 + ax + bx2

)
,

where n = |V (G)|.
Since each vertex of G is joined, in G ◦ (Kp ∪Kq), to all the vertices of a

copy of Kp ∪Kq, it is clear that

deg I (G ◦ (Kp ∪Kq) ; x) = α (G ◦ (Kp ∪Kq)) = 2n.

To get the result, we use Lemma 3, i.e., we have to show that

(
1 + ax + bx2

)n
· I
(
G;

x

1 + ax + bx2

)
=

= bn · x2n ·
(

1 + a · 1

bx
+ b ·

(
1

bx

)2
)n

· I

G;
1
bx

1 + a · 1
bx

+ b ·
(

1
bx

)2

 .

190



V.E. Levit, E. Mandrescu - f -Symmetric independence polynomials

Using the fact that

x

bx2 + ax + 1
=

1
bx

1 + a · 1
bx

+ b ·
(

1
bx

)2

we get that

bn · x2n ·
(

1 + a · 1

bx
+ b ·

(
1

bx

)2
)n

· I

G;
1
bx

1 + a · 1
bx

+ b ·
(

1
bx

)2

 =

= bn · x2n ·
(

bx2 + ax + 1

bx2

)n

· I
(
G;

x

bx2 + ax + 1

)
=

=
(
1 + ax + bx2

)n
· I
(
G;

x

1 + ax + bx2

)
,

as claimed.

Corollary 5 [20] I (G ◦ 2K1; x) is symmetric, for every graph G.

Proof. Taking p = q = 1 in Theorem 4, we infer that the coefficients (si) of
I (G ◦ 2K1; x) satisfy

sα−i = (pq)
α
2
−i · si = si, 0 ≤ i ≤ α

2
,

where α = α (G ◦ 2K1). In other words, I (G ◦ 2K1; x) is symmetric.

Corollary 6 If the coefficients (si) of I (G ◦ (Kp ∪Kq) ; x) satisfy

s2
i ≥ si−1 · si+1, 1 ≤ i < α (G ◦ (Kp ∪Kq)) /2,

then I (G ◦ (Kp ∪Kq) ; x) is log-concave.

Proof. If n equals the order of G, then α (G ◦ (Kp ∪Kq)) = 2n. According to
Theorem 4, the coefficients of I (G ◦ (Kp ∪Kq) ; x) satisfy

s2n−i = (pq)r−i · si, 0 ≤ i ≤ n.

Hence we obtain that

0 ≤ s2
i−si−1·si+1 =

(
(pq)i−n · s2n−i

)2
−(pq)i−1−n·s2n−(i−1)·(pq)i+1−n·s2n−(i+1) =

=
(
(pq)i−n

)2
·
(
s2
2n−i − s2n−(i−1) · s2n−(i+1)

)
which implies that I (G ◦ (Kp ∪Kq) ; x) is log-concave.
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3. Conclusions

In this paper we have shown that I (G ◦ (Kp ∪Kq) ; x) enjoys some kind
of symmetry property, which we called f -symmetry. It seems to be interesting
to find other graphs H such that I (G ◦H; x) satisfy similar properties.
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