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MATRIX ALGEBRAS OVER GRASSMANN ALGEBRAS AND
THEIR PI-STRUCTURE

Tsetska Rashkova

Abstract. In the paper we explore the PI-structure of some algebras
of upper triangular matrices over Grassmann algebras. Applying the tensor
product construction for the Grassmann algebra G(V ) and two matrix algebras
we illustrate that the corresponding tensor products satisfy the Grassmann
identity [x1, x2, x3] = 0 as well. Considering some noncommutative matrix al-
gebras over concrete finite dimensional nonunitary Grassmann algebras G′(Vn)
for small n we define a natural k such that the identity Xk = 0 holds in the
corresponding matrix algebras over G′(Vn).
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1. Preliminaries

We consider some algebras of upper triangular matrices over the infinite
dimensional Grassmann algebra G and over the nonunitary finite dimensional
Grassmann algebras G′

n for n = 4, 5, 6 discussing the case of arbitrary n as
well. The algebra G is defined as

G = G(V ) = K〈e1, e2, . . . | eiej + ejei = 0 i, j = 1, 2, . . .〉.

The field K has a characteristic zero. The algebra G′ (without 1) has a basis
{ei1ei2 . . . eik}, where 1 ≤ i1 < i2 . . . < ik. The elements ei are called generators
of G′ while the elements ei1ei2 . . . eik for 1 ≤ i1 < i2 . . . < ik are called basic
monomials of G′. For G = G′ ∪ K the element 1 is a generator as well. The
algebras G and G′ are PI-equivalent (they satisfy one and the same identities).

The algebra G is in the mainstream of recent research in PI-theory. Its
importance is connected with the structure theory for the T -ideals of identities
of associative algebras developed by Kemer. In [10, Theorem 1.2] he proved
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that any T -prime T -ideal can be obtained as the T -ideal of identities of one
of the following algebras: Mn(K), Mn(G) and Mn,u(G), the latter being the
algebra of n × n supermatrices over G = G0 ⊕ G1 with two G0 blocks (with
entries of even degree) of sizes u × u and (n − u) × (n − u) and with two G1

blocks (with entries of odd degree) of sizes u× (n− u) and (n− u)× u.
Another reason for the Grassmann algebra to be one of the fundamen-

tal structures in PI-theory is the fact that it generates a minimal variety of
exponential growth [11].

There is a motivation of considering finite-dimensional Grassmann algebras
as well and it is connected with the emergence in mathematical physics mainly
in quantum field theory of methods from algebraic geometry and Grassmann
algebras. We give only three examples here:

If we take a Grassmann algebra with two generators y and y∗ and a con-
jugation ∗ we have (y∗)∗ = y and one could define Grassmann differentiation
and integration, the exponential function, scalar product of linear functions,
etc. Thus for example Fermion coherent states for Bosons could be introduced
and its physical significance investigated [7].

In [15] Schornhorst considers a special type integral equation with an un-
known function over a finite dimensional Grassmann algebra G2n and gives
conditions for the existence of solutions of this equation for n = 2 and n = 4.
The choice of the equation is motivated by the effective action formalism of
lattice quantum field theory.

Concerning nonrelativistic theory functions on phase space are elements of
a Grassmann algebra with three generators [3].

The importance of considering matrix algebras Mn(G) is confirmed by the
following statement as the trivial isomorhism G⊗Mn(K) ' Mn(G) holds:

Proposition 1 [6, Corollary 8.2.4, p. 111] For every PI-algebra R there ex-
ists a positive n such that T (R) ⊇ T (Mn(G)), i.e. R satisfies all polynomial
identities of the n×n matrix algebra Mn(G) with entries from the Grassmann
algebra.

Some well known facts concerning the algebra G are the following:

Proposition 2 [11, Corollary, p. 437] The T -ideal T (G) is generated by the
identity [x1, x2, x3] = 0.

Proposition 3 [2, Lemma 6.1] The algebra G satisfies Sn(x1, . . . , xn)k = 0

170



Ts. Rashkova - Matrix algebras over Grassmann algebras and their...

for all n, k ≥ 2 and

Sn(x1, . . . , xn) =
∑

σ∈Sym(n)

(−1)σxσ(1) . . . xσ(n)

being the standard identity.

Proposition 4 [5, Exercise 5.3] For Gk = G(Vk) over k-dimensional vector
space Vk all identities follow from the identity [x1, x2, x3] = 0 and the standard
identity

S2p(x1, . . . , x2p) = 0,

where p is the minimal integer such that 2p > k.

Proposition 5 [8, Theorem 3.5] Let K be an infinite field. A basis of the
identities of G2k is given by the polynomials

[x1, x2, x3] = 0, [x1, x2] . . . [x2k+1, x2k+2] = 0.

The identities for an algebra are connected with its central polynomials.
The polynomial c(x1, ..., xm) from the free associative algebra K〈X〉 is called
a central polynomial for an algebra R if it has no constant term, c(r1, ..., rm)
belongs to the centre of R for all r1, ..., rm ∈ R and c(x1, ..., xm) = 0 is not a
polynomial identity for R.

It is interesting to note that the polynomial c(x1, x2) = [x1, x2] is a central
polynomial for the algebra G of minimal degree and this degree is minimal in
general if we consider as trivial the case of commutative algebras for which the
polynomial x is central.

Proposition 6 [4, Proposition 5] The vector space of the central polynomials
of G is generated (as a T-space in K〈X〉) by 1 and the polynomials x1[x2, x3, x4]
and [x1, x2].

2. Identities for Mn(G) and Un(G)

The algebra Un(K) of the upper triangular n × n matrices over the field
K plays an important role in PI-theory. The identities of Un(K) describe in
certain sense the subvarieties of the variety of algebras generated by the matrix
algebra of order two.

Following this law we state here the known identities both for the algebras
Mn(G) and Un(G).
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Proposition 7 [14, Theorem] The matrix algebra Mn(G) has no identities of
degree 4n− 2.

Vishne gave in [17] explicit identities of degree 8 for M2(G) and concluded
the following

Proposition 8 [17, Corollary 4.5] If n is even the degree of a multilinear
identity for Mn(G) is at least 4n.

The identity of ”algebraicity” for matrices over the Grassmann algebra was
defined by J. Szigeti in [16].

Proposition 9 [16, Theorem 5.1.] The polynomial

S2n2([X2n2

, Y ], [X2n2−1, Y ], . . . , [X2, Y ], [X, Y ]) = 0

is an identity for Mn(G).

In the case of upper triangular matrices we cite a well known fact, following
from [9, Theorem 1.9.1], namely

Proposition 10 The identity [X, Y, Z]n = 0 holds for any three upper trian-
gular matrices X, Y, Z from Un(G).

For any PI-algebra R we denote by cm(R) the dimension of the space
of the multilinear polynomials of degree m modulo the T -ideal T (R) and

define the exponent exp(R) = limm→∞
m

√
cm(R). The exponent of a PI-

algebra can serve as a scale for the complexity of the polynomial identities. If
T (R1) ⊂ T (R2), then R2 has more identities than R1 and exp(R1) ≥ exp(R2).
Due to Krakowski, Regev and Berele it is known that cm(G) = 2m−1 and
exp(Mn(G)) = 2n2 as cited in [6, p.19, 114]. In [8] it was proved that

cm(G2k) =
∑k

j=0

(
m
2j

)
3. Examples of matrix algebras over G that satisfy the

Grassmann identity

As Proposition 10 holds we are interested in finding some classes of upper
triangular matrices Un(G) for arbitrary n for which a lower degree (not depen-
dent of n) of the triple commutator (of length 3) is an identity. The tensor
product construction of G with commutative matrix algebras leads to the next
two propositions.
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For simplicity when working in concrete 2 × 2 or 3 × 3 matrix algebras
we’ll denote the Grassmann elements by Greek letters. In the statements for
n×n matrices for arbitrary n we’ll use the roman notation for the Grassmann
elements.

Proposition 11 The algebra

U1(G) = {



a a12 a13 ... ... a1n−1 a1n

0 a 0 ... ... 0 a1n−1

0 0 a 0 ... 0 a1n−2

... ... ... ... ... ... ...
0 ... ... ... ... a a12

0 ... ... ... ... 0 a


|a, a1i ∈ G, i = 2, .., n}

satisfies the Grassmann identity [X1, X2, X3] = 0.

Proof: We give a direct proof of the proposition. We present any matrix Xs

(where 1 ≤ s ≤ 3) as a sum Xs = Ys +Zs for Ys =
∑n

i=1 aseii +αse1n and Zs =

a
(s)
12 (e12 + en−1 n)+a

(s)
13 (e13 + en−2 n)+a

(s)
14 (e14 + en−3 n)+ ...+a

(s)
1n−1(e1n−1 + e2n).

If in the expression considered there is only one matrix the index ”s” will be
omitted.

For the corresponding triple commutators we get
[Y1, Y2, Y3] = [a1, a2, a3]

∑n
i=1 eii + ([a1, a2, α3] + [a1, α2, a3] + [α1, a2, a3])e1n;

[Y1, Y2, Z] = [a1, a2, a12](e12 + en−1 n) + [a1, a2, a13](e13 + en−2 n)+
... + [a1, a2, a1 n−1](e1n−1 + e2n);

[Y1, Z, Y2] = [a1, a12, a2](e12 + en−1 n) + [a1, a13, a2](e13 + en−2 n)+
... + [a1, a1n−1, a2](e1n−1 + e2n);

Z1Z2Z3 ≡ 0;
[Z1, Z2, Y ] = ([a

(1)
12 , a

(2)
1n−1, a] + [a

(1)
13 , a

(2)
1n−2, a] + ... + [a

(1)
1n−1, a

(2)
12 , a])e1n;

[Y, Z1, Z2] = ([a, a
(1)
12 , a

(2)
1n−1] + [a, a

(1)
13 , a

(2)
1n−2] + ... + [a, a

(1)
1n−1, a

(2)
12 ])e1n.

Proposition 2 gives that all these commutators are zero. As [X1, X2, X3] =
[Y1 + Z1, Y2 + Z2, Y3 + Z3] we get [X1, X2, X3] = 0.

Corrolary 1 For the algebra U1(G) the polynomial [X1, X2] is central and
cm(U1(G)) = 2m−1.

Another example gives

173



Ts. Rashkova - Matrix algebras over Grassmann algebras and their...

Proposition 12 The algebra

U2(G) = {



a a12 a13 ... ... a1n−1 a1n

0 a 0 ... ... 0 −a1n−1

0 0 a 0 ... 0 −a1n−2

... ... ... ... ... ... ...
0 ... ... ... ... a −a12

0 ... ... ... ... 0 a


|a, a1i ∈ G, i = 2, .., n}

satisfies the Grassmann identity [X1, X2, X3] = 0.

4. Nilpotency of the elements of some matrix algebras over G′
n

for n = 4, 5, 6

Very little is known for the identities of Mn(G) even for n = 2 (except the
Vishne identities [17]). Thus investigations seem to be useful even for special
matrix subalgebras and even over finite dimensional Grassmann algebras. In
the next investigations we deal with concrete nonunitary finite dimensional
Grassmann algebras G′

n. Our aim is to find such classes of upper triangular
s × s algebras over G′

n for which there exists a natural k < n + 1 : Xk = 0 is
an identity for them. As G′

n are nilpotent algebras of index ≤ n + 1 the same
is valid for Ms(G

′
n) and obviously Xn+1 = 0 for all such algebras.

Using a programme written in the system for computer algebra Mathemat-
ica [13] we find m < n + 1 such that xm = 0 holds for the considered finite
dimensional Grassmann algebras G′

n:

Proposition 13 The identity x3 = 0 holds for the algebra G′
4.

Proposition 14 The identity x4 = 0 holds for the algebras G′
5 and G′

6.

The algebras of upper triangular matrices that we consider here are pro-
voked by [12]. The authors there study the ∗-varieties of associative algebras
with involution ∗ over a field of characteristic zero which are generated by a
finite-dimensional algebra. Mattina and Misso gave a list of algebras classifying
all such ∗-varieties whose sequence of ∗-codimensions is linearly bounded (these
are the dimensions of the space of multilinear polynomials in n ∗-variables for
n = 1, 2, ... in the corresponding relatively free algebra with involution of
countable rank).

174



Ts. Rashkova - Matrix algebras over Grassmann algebras and their...

Matrix algebras over G′
4.

Proposition 15 In G′
4 the following identities hold:

βα2 + α2β = 0,

αβα = 0,

αγβ + βγα = 0,

αβγδ = −αβδγ.

Proof: The partial linearization of α3 = 0 is βα2 + αβα + α2β = 0. The
Grassmann identity [β, α, α] = 0 gives βα2 − αβα − αβα + α2β = 0. As the
field K is of characteristic 0 we get the first two identities. The linearization
of the second identity gives the third one. Applying the third identity 3 times
we get the last one, namely αβγδ = −γβαδ = γδαβ = −αβδγ.

Proposition 16 The algebra M2(G
′
4) satisfies the identity X4 = 0.

Proof: For A =

(
α β
γ δ

)
we get that

A4 =

(
βδγα + αβδγ + βδ2γ α2βδ + αβγ2

δγα2 + δ2γα γα2β + δγαβ + γαβδ

)
.

According to Proposition 15

α2βγ = αβ2γ = αβγ2 = 0,

βδγα = −βδαγ = γδαβ = −αβδγ,

δγαβ = −αβγδ = γδβα = −γαβδ.

Thus we see that all entries of the matrix A4 are zero.

Proposition 17 The matrix algebras U3(G′
4) = {

 α δ 0
0 β 0
0 0 γ

}, U4(G′
4) =

{

 α 0 δ
0 β 0
0 0 γ

} and U5(G′
4) = {

 α 0 0
0 β δ
0 0 γ

} satisfy the identity X4 = 0.
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Proof: For A ∈ U3(G′
4) modulo κ3 = 0 for any κ ∈ G′

4 we get that the only
nontrivial entry of A4 is the (1, 2) entry,namely α2δβ + αδβ2. According to
Proposition 15 it is zero.

Analogous are the other two cases.
Using the same direct approach we get

Proposition 18 The matrix algebras U6(G′
4) = {

 α β γ
0 α δ
0 0 α

}, U7(G′
4) =

{

 α β γ
0 α δ
0 0 0

} and U8(G′
4) = {

 0 β γ
0 α δ
0 0 0

} satisfy the identity X4 = 0.

The identity X4 = 0 is satisfied as well by some upper triangular n × n
matrices over G′

4 for arbitrary n. We formulate

Theorem 1 The matrix algebras U9(G′
4) = {



0 ... ... ... 0 a1n−1 a1n

0 a 0 ... ... 0 a2n

0 ... ... ... ... ... 0
... ... ... ... ... ... ...
0 ... ... ... 0 a 0
0 ... ... ... ... 0 0


}

and U10(G′
4) = {



a a12 a13 ... ... a1n−1 a1n

0 ... ... ... ... 0 a2n

0 ... ... ... ... 0 a3n

... ... ... ... ... ... ...
0 ... ... ... ... 0 an−1n

0 ... ... ... ... 0 a


} satisfy the identity

X4 = 0.

Proof: For A ∈ U9(G′
4) we get that modulo a3 = 0 the only non-zero entries

of A3 = B are b1n−1 = a1n−1a
2 and b2n = a2a2n. Thus A4 = 0 modulo a3 = 0.

Let A be an element of the algebra U10(G′
4) . We follow the (1, n)-entry

in the powers of A:
For A2 = B we get b1n = aa1n + a12a2n + · · ·+ a1na.
For A3 = C we have

c1n = a2a1n + aa12a2n + · · ·+ aa1n−1an−1n + aa1na + a12a2na + · · ·+ a1na
2.
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Applying Proposition 15 we get

c1n = aa12a2n + · · ·+ aa1n−1an−1n + a12a2na + · · ·+ a1n−1an−1na.

For A4 = D we define the corresponding entry, namely

d1n = a2a12a2n + a2a13a3n + · · ·+ a2a1n−1an−1n +

aa12a2na + aa13a3na + · · ·+ aa1n−1an−1na + a12a2na
2 + · · ·+ a1n−1an−1na

2.

Applying Proposition 15 the middle (n−2)-th summands are zero. Then we
group the first of the remaining summands with the (n−1)-th one, the second
with the n-th and so on. All these (n − 2) groups are zero using Proposition
15.

All other entries include a3 and applying Preposition 13 we get that A4 = 0.

Matrix algebras over G′
5.

Proposition 19 In G′
5 the following identities hold:

α3β + βα3 = 0,

αβα2 + α2βα = 0,

α2βα2 = 0.

Proof: The partial linearization of α4 = 0 gives βα3+αβα2+α2βα+α3β = 0.
The Grassmann identity [β, α, α] = 0 could be written as βα2 + α2β = 2αβα.
Multiplying it once by α on the left, then by α on the right and summing we
get that modulo the above partial linearization αβα2 + α2βα = 0 and thus
α3β + βα3 = 0. The Grassmann identity [α2, β, α2] = 0 gives (modulo α4 = 0)
that α2βα2 = 0.

Proposition 20 The matrix algebras

U11(G′
5) = {

 0 β 0
0 α 0
0 0 γ

}, U12(G′
5) = {

 0 0 β
0 α 0
0 0 γ

} and U13(G′
5) =

{

 α β γ
0 α δ
0 0 0

} satisfy the identity X5 = 0
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Theorem 2 The matrix algebras U14(G′
5) = {



0 ... ... ... 0 a1n−1 a1n

0 a 0 ... ... 0 a2n

0 ... ... ... ... ... 0
... ... ... ... ... ... ...
0 ... ... ... 0 a 0
0 ... ... ... ... 0 0


}

and U15(G′
5) = {



a a12 a13 ... ... a1n−1 a1n

0 0 0 ... ... 0 a2n

0 0 0 0 ... 0 a3n

... ... ... ... ... ... ...
0 ... ... ... ... 0 an−1n

0 ... ... ... ... 0 a


} satisfy the identity

X5 = 0.

Proof: The proof follows the same pattern as the proof of Theorem 1. For
any A of U14(G′

5) (of U15(G′
5)) we form A2, A3, A4 = B. We define b1n, apply

Proposition 19 and get that A5 = 0.

Matrix algebras over G′
6.

As Proposition 19 holds for G′
6 as well analogues of Proposition 20 and

Theorem 2 hold.

Proposition 21 The matrix algebra U16(G′
6) = {

 0 β γ
0 α δ
0 0 0

} satisfies the

identity X6 = 0.

Proof: For the matrix A =

 0 β γ
0 α δ
0 0 0

 modulo α4 = 0 we get that the only

nonzero entry of A5 is the (1, 3)-entry, equal to βα3β. Thus A6 = 0.

5. The identity xk = 0

Theorem 1 and Theorem 2 could be generalized in an obvious way, namely

Theorem 3 Let the identities xk = 0 for a given k and [x1, x2, x3] = 0 hold
in the associative algebra GR over a field of characteristic zero. Then for the

178



Ts. Rashkova - Matrix algebras over Grassmann algebras and their...

matrix algebras U17(GR) = {



0 ... ... ... 0 a1n−1 a1n

0 a 0 ... ... 0 a2n

0 ... ... ... ... ... 0
... ... ... ... ... ... ...
0 ... ... ... 0 a 0
0 ... ... ... ... 0 0


} and

U18(GR) = {



a a12 a13 ... ... a1n−1 a1n

0 ... ... ... ... 0 a2n

0 ... ... ... ... 0 a3n

... ... ... ... ... ... ...
0 ... ... ... ... 0 an−1n

0 ... ... ... ... 0 a


} the identity Xk+1 = 0

holds.

Before proving the theorem we need analogues of Proposition 15 and Propo-
sition 19, namely

Proposition 22 Let the associative algebra GR satisfy the identities xk = 0
for a given k and [x1, x2, x3] = 0. Then the following identities hold, namely,
for k = 2l + 1

αxk−1 + xk−1α = 0,

xαxk−2 + xk−2αx = 0,

...

xl−1αxl+1 + xl+1αxl−1 = 0,

xlαxl = 0

and for k = 2l

αxk−1 + xk−1α = 0,

xαxk−2 + xk−2αx = 0,

...

xl−1αxl + xlαxl−1 = 0.

Proof: We’ll consider only the case when k is odd, namely k = 2l + 1. The
partial linearization of xk = 0 gives the identity

αxk−1 + xαxk−2 + x2αxn−3 + · · ·+ xk−1α = 0. (1)
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The identity [α, xk−2, x] = 0 leads to αxk−1 + xk−1α = xαxk−2 + xk−2αx.
Analogously [α, xk−3, x2] = 0 leads to αxk−1+xk−1α = x2αxk−3+xk−3αx2. We
continue in this way and using [α, xl+1, xl−1] = 0 we get that αxk−1 + xk−1α =
xl−1αxl+1 + xl+1αxl−1. Thus (1) could be written as

l(αxk−1 + xk−1α) + xlαxl = 0. (2)

The identity [α, xl, xl] = 0 gives

αxk−1 + xk−1α = 2xlαxl. (3)

Equations (2) and (3) prove the proposition.
Proof of Theorem 3: We’ll present the considerations only for the algebra

U18(GR). Let A ∈ U18(GR). We could follow the entries of the powers of A.
Let Ak = B. Then b11 = ak = 0, b1i = ak−1a1i for i = 2, ..., n−1, bjn = ajna

k−1

for j = 2, ..., n. The element b1n is equal to

ak−1a1n + ak−2a12a2n + · · ·+ a12a2na
k−2 + a1na

k−1.

Modulo xk = 0 the only nonzero entry of Ak+1 = C is the entry c1n, equal to

ak−1a12a2n + · · ·+ ak−1a1n−1an−1n + ak−2a12a2na

+ · · ·+ aa12a2na
k−2 + · · ·+ a12a2na

k−1,

which is zero because of Proposition 22.

6. Relation of the above results to algebras with involution

Now we consider finite dimensional Grassmann algebras with involution
and some matrix algebras over them.

According to [1] it is enough to consider two involutions for the algebra G
- the trivial involution ∗ = id, i.e. id(ei) = ei for the generators ei of G and
the involution ∗ = φ acting as φ(e2k−1) = e2k and φ(e2k) = e2k−1.

Thus for G5 we could work with the identity involution id only, while for the
algebras G′

4 and G′
6 we have two possibilities. We define the skew symmetric

elements with respect to the considered involution. Thus we get elements
without constant term and we could rely on results already obtained.
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Skew symmetric elements of G5.
Every element of G (in our case of G5) is ordered in the way used in [13]:

First is the element of the field K, then e1, e2, e1e2, e3, then we multiply
(on the right) by e3 all previous elements (in the same order), then comes e4

and all previous elements multiplied by e4. Thus expressing every element
x ∈ G5 as the vector x = (a1, a2, ...., a32) where ai are the corresponding
coefficients, definig ”the images” of all summands ei1 ...eis we form the vector
id(x). For example id(e2e3e5) = id(e5)id(e3)id(e2) = e5e3e2 = −e2e3e5. Thus
the coefficient of e2e3e5 in id(x) which is the 23-rd coordinate is −a23. The
condition id(x) = −x defines the presentation of x, namely

xss = (0, 0, 0, a4, 0, a6, a7, a8, 0, a10, a11.a12, a13, a14, a15, 0, 0,

a18, a19, a20, a21, a22, a23, 0, a25, a26, a27, 0, a29, 0, 0, 0).

Using a programme written in Mathematica [13] we get

Proposition 23 All skew symmetric with respect to the involution ∗ = id
elements of G5 are nilpotent of index ≤ 3.

We denote the set of the elements xss by (G−
5 , id). Thus we get analogues

of Propositions 16–18 and Theorem 1, namely

Corrolary 2 All matrices of the types described in Propositions 16–18 and
Theorem 1 with entries from (G−

5 , id) are nilpotent with index of nilpotency
≤ 4.

Skew symmetric elements of G6.
Proposition 13 shows that it is good to consider only the algebra G6.
We start with the involution id and define the skew symmetric with respect

to this involution elements of G6, denoting them by (G−
6 , id) . Using again the

programme from [13] we get one condition on 15 of the 35-th coefficients of
the summands of any element xss of (G−

6 , id) aiming the index of nilpotency
of xss to be ≤ 3.

Next we apply the involution φ on the elements x of the algebra G6. Using
the already mentioned above unique order of the summands of x [13] and the
condition φ(x) = −x we get(denoted by (4)) that

xss = (0, a2,−a2, 0, a5, a6, a7, a8,−a5, a7, a6,−a8, 0, a14,−a14, 0, a17, a18,

a19, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31, a32,−a17,
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a19, a18,−a20, a25, a27, a26, a28, a21, a23, a22, a24,−a29, a31, a30,

−a32, 0, a50,−a50, 0, a53, a54, a55, a56,−a53, a55,

a54,−a56, 0, a62,−a62, 0).

We’ll explain the form (4) of xss considering only the 8-th and the 12-th
coordinates. The 8-th summand is a8e1e2e3. Thus

φ(a8e1e2e3)) = a8φ(e3)φ(e2)φ(e1) = a8e4e1e2 = a8e1e2e4.

As φ(x) = −x we get that the coefficient of e1e2e4 which is the coefficient of
the 12-th summand of xss has to be −a8.

Using again Mathematica [13] we get that x3
ss = 0 leads to the conditions:

(a6 + a7)(a2(a21− a25)− a18a5 + a19a5 + a17a6− a17a7) = 0;

(a18 + a19)(a2(−a21 + a25) + a18a5− a19a5− a17a6 + a17a7) = 0;

(a21 + a25)(a2(a21− a25)− a18a5 + a19a5 + a17a6− a17a7) = 0.

These conditions are on the nine of the 28-th independent coefficients in
the presentation (4) of xss.

The system Mathematica could give all classes solutions of the above system
which number appears to be 20.

We formulate only one of them.
Let denote by (GS−6 , φ) the set of the skew symmetric with respect to the

involution φ elements of G6 which are of the form (4) in which a7 = −16,
a19 = −a18 and a25 = −a21. Thus we get

Proposition 24 All skew symmetric with respect to the involution ∗ = φ
elements xss of (GS−6 , φ) are nilpotent with index of nilpotency ≤ 3 .

Corrolary 3 All matrices of the types described in Propositions 16–18 and
Theorem 1 with entries from (GS−6 , φ) are nilpotent with index of nilpotency
≤ 4.
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