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Abstract. In the present paper we study some generalized probabilistic
metric spaces. Relationships with another deterministic and probabilistic met-
ric structures are analyzed. A contraction condition for mappings with values
into such a generalized probabilistic metric space is given. Fixed point results
are proved.
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1. Introduction

In [11] K. Menger proposed a probabilistic concept of distance by replacing
the number d(p, q), the distance between points p, q by a distribution function
Fp,q. This idea led to a large development of probabilistic analysis [2], [8] [12].
The idea of a n-dimensional metric has also appeared first in K. Menger’s
papers [10]. Three decades later S. Gähler formulated an appropriate system
of axioms for a distance between three points and developed the theory of
2-metric spaces [5].
An enlargement of the concept of 2-metric space was given in [3], where a
study of generalized metric spaces is developed.
Now, we recall some standard notions and notations. Let R denotes the set of
real numbers, R+ = {x ∈ R : x ≥ 0} and I = [0, 1] the closed unit interval.
A mapping F : R → I is called a distribution function if it is non decreasing,
left-continuous with inf F = 0 and sup F = 1.
D+ denotes the set of all distribution functions for that F (0) = 0. Let F, G be
in D+ , then we write F ≤ G if F (t) ≤ G(t) for all t ∈ R . If a ∈ R+ then Ha

will be the element of D+, for which Ha(t) = 0 if
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t ≤ a and Ha(t) = 1 if t > a . It is obvious that H0 ≥ F , for all
F ∈ D+. The set D+ will be endowed with the natural topology defined by
the modified Lévy metric dL [10]. The modified Levy metric dL induces on D+

the topology of weak convergence, and the following properties are verified :
(1) F (t) > 1− t if and only if dL(F, H0) < t.
(2) If F 6 G then dL(G, H0) 6 dL(F, H0).
(3) The metric space (D+, dL) is compact, and hence complete.
A t-norm T1 is a two place function T1 : I × I → I which is associative,

commutative, non decreasing in each place and such that T1(a, 1) = a, for
all a ∈ [0, 1]. A triangle function τ1 is a binary operation on D+ which is
commutative, associative and for which H0 is the identity, that is, τ1(F, H0)) =
F , for every F ∈ D+ [2],[12].
In [3] B. C. Dhage formulated the following system of axioms for a distance
between three points and developed a theory of generalized metric spaces.
Definition 1.1. Let X be a non empty set. A generalized metric space is a
pair (X, d), where d is a mapping from X ×X ×X into R+ and the following
conditions are satisfied :

(4) d(x, y, z) = 0 if and only if x = y = z.
(5) d(x, y, z) = 0 if at least two of x, y, z are equal.
(6) d(x, y, z) = d(x, z, y) = d(y, z, x), for every x, y, z in X.
(7) d(x, y, z) 6 d(x, y, u) + d(x, u, z) + d(u, y, z), for every x, y, z, u in X.

Geometrically, the 2-metric between three points defined in [5] measures
the area of the triangle having as vertices these points, while the generalized
metric defined in [3] measures the perimeter of the same triangle.

2. Generalized probabilistic metric spaces

Let T1 be a t-norm and let τ be a triangle function. In the sequel we will
use the functions T : [0, 1]3 → [0, 1] given by T (a, b, c) = T1(T1(a, b), c) and
τ : [D+]3 → D+ given by τ(F, G, H) = τ1(τ1(F, G), H), we name T a th-norm
and τ a th-function.
They have appropriate properties for writing a triangle inequality in general-
ized probabilistic metric spaces. In [1] a generalized class of t-norms on [0, 1]3

was defined , but they are, in fact, th-norms.
Definition 2.1. A generalized probabilistic metric space is an ordered triple (
X,F , τ), where X is a non empty set, F is a function defined on X ×X ×X
with values into D+, τ is a th-function and the following conditions are satis-
fied:
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(8) Fx,y,z = H0 if and only if x = y = z,
(9) Fx,y,z = Hx,z,y = Hy,z,x, for every x, y, z in X.
(10) Fx,y,z > τ(Fx,y,u, Fx,u,z, Fu,y,z), for every x, y, z, u in X.

The inequality (10), named and tetrahedral inequality can be given by a
th-norm T by :

(11) Fx,y,z(t) > T (Fx,y,u((t1), Fx,u,z(t2), Fu,y,z(t3)), for every t1, t2, t3 ∈
R+ such that t1 + t2 + t3 = t. In this case (X,F , T ) is called a generalized
Menger metric space.
It is easy to check that every generalized metric space (X, d) can be made,
in a natural way, a generalized Menger metric space by setting Fx,y,z(t) =
H0(t− d(x, y, z)))(t), for every x, y ∈ X, t ∈ R+ and T = Min .
The relationship between the two class of generalized metric spaces is given by
the following statement.
Proposition 2.2. If T is a left continuous th-norm and τT is the th-function
defined by τT (F, G, H)(t) = sup

t1+t2+t3<t
T (F (t1), G(t2), H(t3)), t > 0 , then

(X,F , τT ) is a probabilistic D-metric space if and only (X,F , T ) is a Menger
D-metric space.
Definition 2.3. A sequence {xn} of points in a generalized probabilistic metric
space (X,F , τ) is said to be convergent to the point x ∈ X if for each t > 0
there exists n0 ∈ N such that

Fxn,xm,x(t) > 1− t,

for all n,m > n0.
Definition 2.4. We say that a sequence {xn} of probabilistic D-metric space
(X,F , tau) is a Chauchy sequence if for each t > 0 there exists n0 ∈ N such
that

Fxn,xm,xp(t) > 1− t,

for all m, p > n > n0.
Definition 2.5. A generalized probabilistic metric space (X,F , T ) is said to
be complete if every Cauchy sequence under the probabilistic metric F con-
verges to a point x ∈ X
Definition 2.6. A self mapping f of a probabilistic D-metric space (X,F , T )
is said to be continuous if fxn → fx, whenever xn → x.
Proposition 2.7. Let {xn} be a sequence of points in a generalized probabilis-
tic metric space (X,F , T, ) T be a continuous th-norm T . Then we have:
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(a) xn → x, if and only if dL(Fxn,xm,x, H0) → 0, (n, m →∞).
(b) xn → x if and only if Fxn,xm,x(t) → H0(t), for all t > 0.
(c) {xn} is a Cauchy sequence if and only if dL(Fxn,xm,xp , H0 → 0

(n,m, p →∞).
(d) {xn} is a Cauchy sequence if and only if Fxn,xm,xp(t) → H0(t)

, for all t > 0.

Example 2.8.Let (L, ‖.‖) be a separable Banach space and let (L,B) be
the measurable space, where B is the σ-algebra of Borel subsets of the separable
Banach space (L, ||.||). We denote by X the linear space of all random variables
defined on a probability measure space (Ω,K, P ) with values in (L,B).
For all x, y, z ∈ X, t ∈ R, and t > 0 we define the mapping F : X3 → D+

given by F(x, y, z) = Fx,y,z(t), where

Fx,y,z(t) = P ({ω ∈ Ω : ||x(ω)− y(ω)||+ ||x(ω)− y(ω)||+ ||y(ω)− z(ω)|| < t}).

The triple (X,F , Tm) becomes a generalized probabilistic metric space.
The following theorem gives a relationship between a generalized probabilistic
metric space and a probabilistic metric space.
Theorem 2.9.Let (X,F , T ) be a Menger space which has at least three points
and let F : X3 → D+ a mapping given by

F(x, y, z) = Fx,y,z(t) = Min{Fx,y(t), Fy,z(t), Fz,x(t)},

then the triple (X,F , Min) is a generalized Menger space.
Now, we show that some generalized Menger spaces (X,F , T ) can be endowed
with a generalized metric that induces the same convergence with the gener-
alized probabilistic metric F .
Theorem 2.10. Let (X,F , T ) be a generalized Menger space under a contin-
uous th-norm T such that T > Tm and let consider the mapping d : X3 → R
defined by

d(x, y, z) = sup{ε ∈ [0, 1) : Fx,y,z(ε) 6 1− ε}.

Then we have :

(a) d(x, y, z) < t if and only if Fx,y,z(t) > 1− t.
(b) (X, d) is a generalized metric space.
(c) The convergence under the generalized probabilistic metric F

is equivalent with convergence under the generalized metric d.
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3. A fixed point theorem in a generalized probabilistic metric
space

A first type of contraction conditions in probabilistic metric spaces was first
given [13], fixed point theorems were also obtained. Later a second type of con-
traction mappings was introduced in [9]. Since, many results were obtained
[2],[8],[10]. In what sequel we study a type of contraction in generalized prob-
abilistic metric spaces and we give a fixed point theorem.
Let us consider a function ϕ : R+ → R+ such that the following conditions
are satisfied :
(a1) ϕ is nondecreasing and right continuous;
(a2) lim

n→∞
ϕn(t) = 0, for all t > 0;

(a3) there is t > 0 such that ϕ(t) > 1, ;
It is easy to see that under these conditions ϕ(t) < t. We denote by Φ the set
of all functions which satisfy the conditions (a1), (a2), and a3. The family of
functions ϕk,n(t) = knt, k ∈ (0, 1) and n ∈ N is into the set Φ. Now, let ϕ be
in Φ.
Definition 3.1.Let (X,F , T ) be a generalized Menger space under a continu-
ous th-norm T . A mapping f : X → X which satisfies the following condition
:

(c) If t > 0 and Fx,y,z(t) > 1− t, then Ffx,fy,fz(ϕ(t)) > 1− ϕ(t)

is called ϕ−contraction.
The definition seems to be natural because we mean in a particular case that,
under a probability measure, the perimeter of the triangle whose vertices are
fx, fy, fz is less than the perimeter of the triangle whose vertices are x, y, z.
Theorem 3.2.Let (X,F , T ) be a generalized Menger space under a continuous
th-norm T . Then a ϕ-contraction f : X → X has a unique fixed point which
is the limit of the sequence {xn} defined by x0 ∈ X and xn+1 = fxn, n > 0.
By the above theorems fixed point results can be translated between proba-
bilistic and deterministic generalized metric spaces.
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