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ON THE BICUBIC SPLINE COLLOCATION METHOD FOR 
POISSON’S EQUATIONS 

      
by 

Mihaela  Puscas 
 
 
  Abstract. In this paper is presented a bicubic spline collocation method for the numerical 
approximation of the solution of Dirichlet problem for the Poisson’s equation .The 
approximating solution is efectivly determined in a bicubic Hermite spline functions space by 
using  a suitable basis  constructed as a tensorial product of univariate spline spaces.  
 
1. Introduction. 
 Let consider the Dirichlet problem for the Poisson’s equation on 2R⊂Ω   
                  -∆ u=f   in Ω        
     (1) 
                    u=g   on Ω∂                                        
where Ω := ] [ ] [1,01,0 ×  and Ω∂ is the boundary of Ω . 
         In engineering applications such a problem is of the most importance .In linear 
elasticity , in this theory of thin plates as in the fluid mechanics , many phenomena 
and processes are modeling with this equation . 
         Various methods have been developed for solving the Dirichlet problem (1) 
numerically .A number of works using finite difference methods shows the efficiency 
of such methods , but their order of accuracy are very low .( see[3] , [7] , [10] ) 
.Higher order accuracy can be achieved using finite element methods (see[3] , [7] , 
[11] ) . There are many finite element approaches which use iterative methods , such 
as [3] , [4] . 
         In this paper we shall present a direct bicubic spline collocation method for 
solving numerically the Dirichlet problem for the Poisson’s equations (1) .Such 
methods have been developed in many papers in the last decades ( see [1] ,[2] , [5] , 
[8] , [12] , [13] , [14] ) . 
 
 2. Space of Hermite cubic splines      
Let N be a pozitive integer and let 1...0: 210 =<<<=∆ Ntttt  be a uniform 
partition of [0,1] , such that hntn ⋅=   , n=0,1,…,N , where h=1/N is the stepsize .  
Let hS be the space of Hermite cubic splines on [0,1] , defined by  

         [ ] [ ]{ }1,...,1,0,:1,0: 3,
1

1
−=∈∈=

+
NnPvCvS

nn tth   (2) 

where  3P  denotes the set of polinomials of degree 3≤  and let define : 

         ( ) ( ){ }010::0 ==∈= vvSvS hh     (3) 
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 G.Fairweather [2] constructed a useful bases for hS  in the following manner . One 
defines the functions NnSsv hnn ,...,1,0,, =∈  , associated with the point nt as 
follows : 
         ( ) ,,nmmn tv δ=  ( ) ,0' =mn tv  n, m = 0 ,1 ,…, N 

         ( ) ,0=mn ts  ( ) ,,
1'

nmmn hts δ−=   n,m = 0,1,…,N 

where mn,δ is Kronecher symbol . 

To write explicit formulae for ns we define the functions : 

         ( ) ,32 23
1 ttta +−=   ( ) 23

2 ttta −=  

and the linear mapping ( ) ( )
h

ttt n
n

−=:α  from the interval [ ]1, +nn tt  onto [0,1] . 

Then we construct the following functions : 

         
( )( ) [ ]



 ∈α−

=
otherwise,0

t,tt,t1a
:)t(v 1001

0  

         ( ) ( )( ) [ ]


 ∈α

= −−

otherwise,0
t,tt,ta

tv N1N1N1
N  

         ( )
( )( ) [ ]
( )( ) [ ]








−=∈α−

∈α
= +

−−

otherwise,0
1N,...,1n,t,tt,t1a

,t,tt,ta
tv 1nnn1

n1n1n1

n  

 and  
( )( ) [ ]



 ∈α−−

=
otherwise,0

t,tt,t1a
:)t(s 1002

0  

( ) ( )( ) [ ]


 ∈α

= −−

otherwise,0
t,tt,ta

ts N1N1N2
N  

( )
( )( ) [ ]
( )( ) [ ]








−=∈α−−

∈α
= +

−−

otherwise,0
1N,...,2,1n,t,tt,t1a

,t,tt,ta
ts 1nnn2

n1n1n2

n  

By ordering nv  and ns   we get two sets of basis functions { } 12
0
+

=Φ N
nn  and  

{ } 12
0
+

=Ψ N
nn   for the spline space hS  : 

         
{ } { }
{ } { }NNNN

NNNN

svsvsv

sssvvv

,,...,,,,:,,...,,

,...,,,,...,,:,,...,,

110012210

1011012210

=ΨΨΨΨ

=ΦΦΦΦ

+

−+      
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and two sets of basis functions for 0
hS     

         
{ } { }
{ } { }NNNN

NN

ssvsvs

sssvv
N

,,,...,,,:,...,

,...,,,,...,:,...,

1111021

10121 1

−−=ΨΨ

=ΦΦ
−       

Let hh SS ⊗   be the space of Hermite bicubic splines on 
−

Ω  , that is , the set of all 

functions on 
−

Ω  which are finite linear combinations of the functions of the form  
)()( yvxu  where hSvu ∈,  .Identically , we define the tensorial product space 

00
hh SS ⊗ on 

−

Ω   .Since the dimension of 0
hS  is 2N , the dimension of 00

hh SS ⊗  is 

.4 2N      
         Let  { } N

mm
2

1=ξ  the Gauss points in ] [1,0  given by :  

         1,...,1,0,
6

33:;
6

33: 2212 −=
+

+=
−

+= ++ Nnhtht nnnn ξξ  

and let ( ) { }{ }N
mmyxyxG 2

1,:,: =∈= ξ   (4) 
be the set of the Gauss points in Ω  . 
         In is known that each 0

hSv∈ is uniquely defined by its values at the Gauss 

points { } N
mm
2

1=ξ . Therefore , in what follows , 0
hS  is regarded as a Hilbert space with 

the inner product >⋅⋅< ,  defined by : 

         ( ) ( )m

N

m
m vuhvu ξξ∑

=

=><
2

12
:,    ,  0, hSvu ∈   (5) 

   
 3.Hermite bicubic spline collocation method . 
First we consider the homogeneons Dirichlet problem for Poisson’s equation  on Ω  : 
         fu =∆−      in  Ω        
    (6) 
           0=u    on  Ω∂  
where ] [ ] [1,01,0: ×=Ω  and Ω∂  is the boundary of Ω   . Let  { } N

nn
2

1=Φ  and { } N
nn
2

1=Ψ  

be the two bases for 0
hS above constructed . The piecewise Hermite bicubic spline 

colocation approximation  

         ( ) ( ) ( )∑∑
= =

⊗∈ΨΦ=
N

i

N

j
hhjijih SSyxuyxu

2

1

2

1

00
,:,   (7) 

to the solution u of (6) is obtained by requiring that : 
         ( ) ( )ξξ fuh =∆−    ,  G∈ξ     (8) 
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where G is defined in (4) . 
The existence and uniquenessof bicubic spline hu  is proved in [12] .  
 By introducing the vectors : 
         u:= [ ]TNNNN uuuuu 2,21,22,12,11,1 ,...,,...,,...,,  
and  
         f:= [ ]TNNNN fffff 2,21,22,12,11,1 ,...,,...,,...,,   ,  ( )mnmn ff ξξ ,:, =  
the system (8) can be written as the system of linear equations  
         )( ΨΦΨΦ ⊗+⊗ ABBA u=f   (9) 
where the matrices ΦA   and ΦB  , respectively ΨA and ΨB are defined by :  

( ) N
nmnmaA 2

1,, =Φ =   ,  ( )mnnma ξ''
, : Φ−=   ,  ( ) N

nmnmbB 2
1,, =Φ =   ,  ( )mnnmb ξΦ=:,  

(10) 
( ) N

nmnmaA 2
1,, =Ψ =   ,  ( )mnnma ξ''

, : Ψ−=   ,  ( ) N
nmnmbB 2

1,, =Ψ =   ,  ( )mnnmb ξΨ=:,  

and in (9) ⊗ denotes the matrix tensor product . 
It follows from (10) and from construction of the bases of S0

h⊗ S0
h that Aψ 

and Bψ are 2N x 2N almost block diagonal matrices with the first and last 2x3 matrix 
and the others 2x4 blocks in Aψ and Bψ given by : 

         







−
−









−−−

−−

2143

4321

2131

31212

bbbb
bbbb

and
aaaa

aaaa
h  

respectively, where: 32a1 =   ,  31a 2 +=   ,  13a 3 −=   ,  ( )
18

349b1
+=     

( )
36

33b2
+= , ( )

18
349b3

−=   ,  ( )
36

33b4
−=   

The first 2x3 block in each matrix is obtained by removing the first column from the 
2x4 block of the corresponding matrix, and the last 2x3 block is obtained by removing 
the third column from 2x4 block of the corresponding matrix. 
Because of the special structure of the matrix BΦ , there are at most four nonzero 
elements in each its column, and therefore the system (9) can be solved effectively, 
getting the approximating bicubic spline solution for the problem (6). 
 Now, we consider the nonhomogenous Dirichlet problem for the Poisson’s 
equation on Ω : 
         fu =∆−    in  Ω 
    (11) 
           u =g   on Ω∂         
where g is a given function. 
The bicubic  spline approximating solution 0

h
0
hh SSu ⊗∈  for (11) is defined in the 

following way: 
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         ( ) ( ) ( )∑ ∑
+

=

+

=

ΨΦ=
1N2

0i

1N2

0j
jiijh yxuy,xu     (12) 

where the bases {Φi}2N+1 and {ψj}2N+1 of the spline space S0
h⊗ S0

h are defined in the 
previous section. 
First we rewrite ( )y,xu h in the form 

         ( ) ( ) ( )y,xu~y,xuy,xu hhh +=
−

    (13) 
where 

         ( ) ( ) ( )∑∑
= =

−

ΨΦ=
N2

1i

N2

1j
jij,ih yxu:y,xu     (14) 

corresponds to the bicubic spline collocation solution of the homogeneous Dirichlet 
problem (6) and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )yxuyxuyxuyxuyxu Ni

N

i
Nii

N

i
ijN

N

j
jNj

N

j
jh 12

2

1
12,0

2

1
0,12

12

0
,120

12

0
,0,~

+
=

+
=

+

+

=
+

+

=

ΨΦ+ΨΦ+ΨΦ+ΨΦ= ∑∑∑∑ (15) 

corresponds to the nonhomgeneous boundary condition in (11). 
The coefficients of ũh in (15) can be determined independently therefore the existence 
and uniqueness of the bicubic spline approximate solution to the nonhomogeneous 
Dirichlet problem for Poisson’s equation (11) follows directly from that of the 
homogeneous Dirichlet problem. 
Following Bialecki and Cai [1] we present two approach to determine the coefficients 
ũh in (15) which we refer to as the boundary coefficients of uh. 
In the first approach we approximate the boundary condition  u=g using the Hermite 
cubic spline interpolant of g on each side of ∂Ω. On the left and right hand sides of ∂Ω 
we require : 

         ( )( ) 0t,0gu nh =−   ,  ( )( ) 0t,0gu
y nh =−
∂
∂

  ,  N,...,1,.0n =  (16) 

         ( )( ) 0t,1gu nh =−   ,  ( )( ) 0t,1gu
y nh =−
∂
∂

  ,  N,...,1,0n =  (17) 

Substituting (12) in (16) and (17) for the coefficients { } 1N2
0jj,ou +

=
of (15) corresponding 

to the left hand side of ∂Ω we obtain : 

         ( )nn2,0 t,0gu =   , ( )n1n2,0 t,0
y
ghu
∂
∂

=+   ,  1N,...,1,0n −=  

         ( )NN2,0 t,0
y
ghu
∂
∂

=   ,  ( )N1N2,o t,0gu =+  
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and for the coefficients { } 1N2
0jj,1N2u +

=+ of (15) corresponding to the right hand side of 

∂Ω, we have: 

         ( )nn2,1N2 t,1gu =+   ,  ( )n1n2,1N2 t,1
y
ghu
∂
∂

=++  ,  1N,...,1,0n −=  

         ( )NN2,1N2 t,1
y
ghu
∂
∂

=+   ,  ( )N1N2,1N2 t,1gu =++  

On the bottom an top sides of ∂Ω we require that 

         ( )( ) 00,tgu nh =−   ,  1N,...,1n −=   ,  ( )( ) 00,tgu
x nn =−
∂
∂

 ,  N,...,0n =  

         ( )( ) 01,tgu nh =−   ,  1N,...,1n −=   ,  ( )( ) 01,tgu
x nh =−
∂
∂

  ,  N,...,0n =  

Substituting (12) into above relations we obtain explicitly the coefficients { } N2
1i0,iu
=

of 
(15) corresponding to the bottom side of ∂Ω : 

         ( )0,tgu n0,n =  ,  1N,...,1n −=   , ( )0,0, nnN t
x
ghu
∂
∂

=+   ,  N,...,0n =  

and the coefficients { } N
iNiu 2

112, =+  of (15) corresponding to the top side of ∂Ω : 

         ( )1,tgu n1N2,n =+   ,  1N,...,1n −=   ; ( )1,t
x
ghu n1N2,nN ∂
∂

=++   , N,...,0n =  

In the second approach we approximate u=g on ∂Ω using the cubic spline interpolant 
at the boundary Gauss points . Thus, on the left and right hand sides of ∂Ω, we require  
         ( )( ) 00,0gu h =−   ,  ( )( ) 0,0gu mh =ξ−    , N2,...,1m =  ; ( )( ) 01,0 =− guh  
and 
         ( )( ) 00,1 =− guh  , ( )( ) 0,1gu mh =ξ− , N2,...,1m =   ; ( )( ) 01,1gu h =−  
respectively . By substituting (12) in the first above relation we obtain the following 
relationships among the coefficients { } 1N2

0jj,0u +

=
of (15) corresponding to the left hand 

side of ∂Ω : 

( )0,0gu 0,0 =   , ( ) ( )∑
+

=

ξ=ξΨ
1N2

0j
mmjj,o ,0gu   , N2,...,1m =  ; ( )1,0gu 1N2,o =+  (18) 

If we set: 
u0: = ( ) ;u,u,...,u,u T

1N2,0N2,01,00,0 + g0: = ( ) ( ) ( ) ( ){ }T
N21 1,0g,,0g,...,,0g,0,0g ξξ  

then (18) can be written as the (2N+2)x(2N+2) almost block linear system, of the form 
: 
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

































01
xxxx
xxxx

....
xxxx
xxxx

xxxx
xxxx

01

 u0 = g0   (19) 

with the same 2x4 blocks. Thus the coefficients { } 1N2
0jj,0u +

=
 can be obtained by solving 

the system (19). By substituting (12) into the second above boundary relation, the 
coefficients { } 1N2

0jj,1N2u +

=+  of (15) corresponding to the right hand side of ∂Ω can be 

obtained in a similar way. 
On the bottom and top sides of ∂Ω we require : 
         ( )( ) 00,0gu h =−   ,  ( )( ) 00gu ,mh =ξ−   , N2,...,1m =  ; ( )( ) 00,1gu h =−  
and 
         ( )( ) ,01,0gu h =−   ( )( ) ,01,gu mh =ξ−   N2,...,1m =   ; ( )( ) 01,1 =− guh  
The first and last above equations give: 
         ( ),0,0gu 0,0 =   ( );0,1gu 0,1N2 =+   ( );1,0gu 1N2,0 =+   )1,1(gu 1N2,1N2 =++  

Using the reordering basis functions { } N2
1ii =Φ as the basis functions { } N2

1ii =Ψ , the 

coefficients { } N2
1i0,iu
=

and { } N2
1i1N2,iu
=+ of (15) corresponding to the bottom and top sides 

of ∂Ω can also be determined by solving a almost block diagonal system of the form 
(19). Consequently, ũh of (13) is determined. 
    Now we have only to obtain the coefficients of ūh in (14).This can be done by 
requiring that : 
         ( ) ( ) ( ) G,fu~u hh ∈ξξ+ξ∆=ξ∆−     (20) 
where the right hand side is known. The functions ūh can be obtained by employing 
the same algorithm for solving the homogeneous Dirichlet problem (6). 
Note that if g=0 , then, in both approaches, all of the coefficients in ũh are zero.. But if 
g≠0 , then, in general, the approximations obtained will be different. 
 Converting to the estimation of the error and converquence of the given 
bicubic spline collocation method, Bielecki and Cai [1] have proved that, on 
nonunifrm partitions, the H1-norm error bounds for the first and second approach are 
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O(h3) provided that the exact solution u belongs to H5(Ω) and H5(Ω)∩C4(Ω), 
respectively. 
 Dillery [5] improved and extended these results.In particular, it was shown 
that the H1-norm error bound for the second approach is O(h2) under the assumption 
that u∈ H6(Ω), then the L2-norm of the error for each approach is O(h6). 
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