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Abstract. We construct some cubature formulas for a hypercube using the 
polynomials approximation of Bernstein-Stancu type with the nodes , ,i j kM α  having the 
coordinates 

( ) ( 2 )m ix i mα α α, = + / + , 

( ) ( 2 )n jy j nβ β β, = + / + , 

( ) ( 2 )r kz k rγ γ γ, = + / + , 
 when , ,α β γ  are non negative real parameters.   
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1. Introduction 

In order to construct cubature formulas for a parallelepipedic domain, 
we shall use some classes of linear positive interpolating operators for 
functions of several variables.  

We want to approximate a multiple integral of order s  extended to a 
hyperparallelepiped 1 1 2 2[ ] [ ] [ ]s s sD a b a b … a b= , × , × × ,  for a 
function sf D: → R . It is known that by linear changes of variables, the 

domain sD  can be transformed into a hypercube [0 1]s
sΩ = , . Hence, we 

construct some cubature formulas for a function sf : Ω → R . Such formulas 
have the following form:  
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where 1 2( )sw x x … x, , ,  is a weight function, sw +: Ω → R . The last term of this 
formula is the remainder, or the complementary term, of the cubature formula 
(1.1), the points 

1 2, , , si i …iM
1 2

(1) (2) ( ) 
 
 

, , ,
s

s
i i ix x … x  are the nodes and 

1 2 si i …iA , , ,  are the 
coefficients of this formula.  

We remark that the nodes and the corresponding coefficients of this 
formula do not depend to the function f  for which we approximate the 
weighted integral by using the multiple sum of order s  from the second 
member of (1.1).  

Such cubature formulas can be constructs in the following ways:  
1) by using the undetermined coefficients method such that the formula 

has a given exactness degree and taking into account the number of 
parameters;  

2) integrating the interpolation formulas of Lagrange, Newton or 
Biermann type. Also, we can use the extensions of the interpolation 
formulas of Bernstein or Hermite-Fejér type, which assure the uniform 
convergence of these interpolation procedures, when ( )sf C∈ Ω .  

It is known that for the s-dimensional Lagrange interpolation procedure the 
uniform convergence can’t be assured whatever is the select grid of nodes.  

2. Cubature formula of Bernstein type in the space of functions ( )ΩsC  

Let us consider the extension of the Bernstein interpolation formula to 
s  variables  
 ( ) ( )( ) ( )( )

1 11 ,..., 1 ,..., 1,..., ,..., ,..., ,
s ss m m s m m sf x x B f x x R f x x= +  

where the Bernstein interpolation polynomial has the following expression  
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 (2.2) 
and the basic interpolation polynomials are  

 ( ) (1 ) 1i i i

i i

i k m k
m k i i i

i

m
p x x x i s
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 
  −
 ,   
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= − , = , .  

The remainder of the formula (2.1) can be expressed by the means of 
the divided differences of second order, see D. D. Stancu [3]. If we consider 
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the weight function identically equal with 1 on Ωs  and we integrate the 
interpolation formula (2.1), we obtain a cubature formula of the following form  
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because  
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According to the results contained in the papers [3], the remainder of the 
cubature formula (2.4) has the following expression:  
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where the derivative points belong to the hypercube Ωs .  

3. Cubature formulas of Bernstein-Stancu type 

By using the approximation polynomials of Bernstein-Stancu type  
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(3.1) 
where , ,α β γ  are non negative real numbers and ,m ip , ,n jp , ,r kp  are the basic 
interpolation polynomials of Bernstein type, we can construct a cubature 
formula for the 3-dimensional cube 3

3 [0 1]= ,D  which is given by 
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This formula has the exactness degree (1 1 1), , .  
We remark that all coefficients are positive and equal. If we assume 

that 2 2 2
3( ), ,∈f C D  then the remainder can be expressed by the partial 
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derivatives of order (2 2 2), ,  as it can be shown by means of the Peano 
theorem. Because the Peano kernels have constant sign on 3D , we can use the 
mean value theorem of integral calculus and the remainder has a representation 
given by the partial derivatives at a point 3( ), , ∈Dξ η ζ .  

When we construct an approximation polynomial of global degree m  
for a tetrahedron 3 {( ) 0 0 0 1}∆ = , , , ≥ , ≥ , ≥ , + + ≤x y z x y z x y z , we obtain the 
following representation  
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and , ,α β γ  are non negative real numbers.  
By the Dirichlet trivariate integral  
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we can obtain the following cubature formula for 3∆ :  
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which has the exactness degree (1 1 1), , . The remainder can be represent by 
means of the partial derivatives of orders (2 0 0), , , (0 2 0), , , (0 0 2), , , (2 2 0), , , 
(2 0 2), , , (0 2 2), , , (2 2 2), ,  in a certain point ( ), ,ξ η ζ  of the tetrahedron 3∆ .  
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