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Abstract. The article presents the mathematical models and the results obtained has the 
numerical modelling of the thermal status of the electrical leads isolated for cryogenic 
applications. Model them mathematics are based on the equation of thermal conduction 1D and 
2D. For the numerical resolution of the thermal conduction equation one uses the finite 
volumes method. The elaborate program permits to get the distribution of the temperature and 
the flux heat along the lead as well as the low by thermal conduction to the extremities of the 
current way. The results obtained is using for the optimization of these current leads.   
Keywords: Numerical modelling, finite volumes method, current leads, cryogenic 
applications.  

 
   

1. Introduction   
    

To the applications cryogenic electrotechnics of high power (cryotron, 
transformer, cable). they are necessary of the current ways for very high 
intensities. The leads them that transport high currents to the outside 
temperature (about 300 K) from the temperature of the cryogenic enclosure (77 
K) create losses of heat that must be minimized. These losses are caused same 
the time by the thermal conduction due the difference of temperature between 
the extremities and by the effect Joule due the passage of the current. Is 
possible to minimize the effect Joule increasing the cross section of the electric 
leads, but it increase of the losses by thermal conduction. The optimal solution 
is obtained a balance between these two effects.    

The efficient possibility  to reduce the losses are cooling the leads by 
the cold gas that escapes of the cryogenic liquid bath (helium, hydrogen, 
nitrogen) [1]. In this article we considers that the lead is cooled by the liquid 
nitrogen that has the same temperature in all of the cryogenic enclosure (77 K). 

The choice of the cooling liquid takes into account the insurance of the 
electric insulation.    

To find the optimal solution, it is has say the lead's diameter, it is 
necessary to know the distribution of the temperature in the current lead to 
calculate the different fluxes of heat and the losses by the effect Joule. In the 
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achieved analysis one used two types of mathematical models, a simplified 
model (1D) and a model 2D.    

   
2. Mathematical models   
   

2.1. 1D Model  
We considered a cylindrical lead (in copper), by the cross section A and 

the length, L  charged by the intensity I in a cryogenic enclosure (Fig. 1). On 
the whole lead length is an exchange of heat by convection, characterized by 
the coefficient Σh .    

The distribution of the temperature on the lead’s length is governed by 
the equation: 
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where λ  - the thermal conductivity, ρ  - the electric resistivity, p  - the lead's 
perimeter, ∞T  - the temperature of the cooling fluid ( K 77 ), J  - the density of 
the current.   

The electric electric resistivity has been calculated, supposing a linear 
variation with the temperature, by the following relation: 

 ( ))293(1)( 293 −α+ρ=ρ TT R  

The thermal conductivity can be calculated using the relation of 
Wiedemann-Franz:  
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where 228 K/V 10 45.2 −⋅=L  is Lorenz's constant.   
The thermal exchange coefficient by convection Σh  varies very strong 

with the temperature (fig. 2) [3]. 
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Fig. 1. Lead in a cryogenic enclosure 

  
Fig. 2. Exchange coefficient by convection versus the difference of 

temperature 
 

 

In the calculation, one used a average value ( K W/m3500 2=Σh ) for 
which the numeric solution gives a difference of temperature very close to the 
value for which Σh   has been chosen. 
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2.1.1. Numerical Algorithm   

   The equation of the mathematical model (1) was discretised, as using 
the presented mesh from the Fig. 3, by the finite volumes method [2].   

The boundary conditions are:   
- at the cold extremity 

K 77)0( 0 === TxT  
-at the hot extremity 

K 293)( === LTLxT  

  
Fig. 3.  1D Mesh  

The equation discretised is the following: 
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While applying the relation (6) for the nodes 2 at 1−N , we obtains a 
system of tridiagonal equations with 2−N equations, which can be solved by 
the Thomas' algorithm. 

2.1.2. Results   
   On the basis of the algorithm describes above, a program in Fortran has 
been elaborated. For different radius of the lead and a current kA 10=I we 
obtains the distribution of the temperature presented in the Fig. 4. 

In the Fig. 5 it presents, for different radius of the lead, the distribution 
of the thermal flux of convection hQ  of the current crossing toward the 
cryogenic liquid.   
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In the Fig. 6 it presents the variation of the total convection flux htQ , 
between the current lead and the cryogenic liquid, versus the lead's radius.   

 
2.1.3. Conclusion   

   The optimization of a cryogenic lead for a current I it makes by the 
good choice of the material of the lead and the cryogenic fluid, and its 
dimensioning. The Fig. 6  shows that there is an optimum radius for which the 
losses by convection are minimal. The flux of conduction at the cold extremity 

0Q , for the values of the radius between 11 mm and 25 mm, vary between 
0.0177 W/A and 0.00479 W/A. 

 
Fig. 4.  Distribution of the temperature 

 



Ioan Popa, Florian Ştefănescu - Numerical modeling of the isolated current 
leads for cryogenic applications 

 401

 
Fig. 5. Distribution of the thermal flux of convection 

 
Fig. 6. Total flux of convection versus the lead's radius 

 
 

   2.2. 2D Model   
We considers the thermal conduction equation 2D in cylindrical 

coordinates:  
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where 2)()( JTTS ρ= , ρ is the electric resistivity of the material and J the density 
of the current.   

In the Fig. 7 we presents the current lead and the boundary conditions. 
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The insulation has been taken in account by an equivalent coefficient of 
thermal exchange by convection. As benefiting of the cylindrical symmetry  of 
the lead, the numeric analysis domain and the mesh used is presented in the 
Fig. 8.  
 
 2.2.1. Numerical Method and Discretization    

We uses the finites volumes method [2] for the discretization of the 
equation (7). To get the general form of the discretised equation, for an interior 
vertex of the calculation domain (the vertex 10 for example), we integrates the 
equation (7) on the control volume presented in the Fig. 9.   

 

Fig. 7. Isolated cylindrical lead and the boundary conditions 
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where: dzdrrdV π= 2  and while replacing in the equation (8) one gets:  
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Fig. 8. Domain of calculation and the 2D mesh 

 

  
Fig. 9. 2D Control  volume in cylindrical coordinates 
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The integration (9) yields: 
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where:  
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While replacing the gradients of temperature in the equation (11), 
gives: 
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where ( ) rrrr Pwe ∆=− 2/22 . 
While regrouping the terms in the equation (12) we gets the general form 

of the discretised equation: 
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We obtain, of the same way, the discretised equations for the vertex 
situated on the West and East boundary of the calculation domain, while taking 
into account the boundary conditions.    

The resolution of the of algebraic system of equations obtained has been 
achieved by using the Thomas algorithm adapted to the problems 2D [2]. The 
elaborated program permits the optimization of the construction of the 
cryogenic current leads. 

 
2.2.2. Results   
The numeric results put in evidence the lead's optimal radius. From a 

radius of 25 - 30 mm, the total losses by effect Joule decrease less with the 
lead's radius (Fig.10). One notes that the thermal flux toward the cryogenic 
surrounding wall (Fig. 11) has a minimal value for the radius of the lead of 30 
mm. The thermal flux by the outside insulation increases very quickly (about) 

 W/mm42  until the mm 2423 −=R . After this value of the radius, the 
thermal flux increases linear with about  W/mm10 . 

 
Fig. 10. The losses by effect Joule versus the lead's radius 
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Fig. 11. The thermal flux on the surface in contact with the cryogenic enclosure 

 
Fig. 12. The thermal fluxes by the surface of cryogenic liquid and by the 

external insulation 
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In the Fig. 13, the negative value of the heat flux means a flux coming 
from the outside toward the lead's inside. We also notes that from a radius of 
25 - 30 mm the distribution of the density of the heat flux rate on the lead's 
length doesn't change practically more. 
 

 
Fig. 13. The distribution of the heat flux rate by the external insulation, on the 

lead's length for different radius 

 
 2.2.3. Conclusions   

 The numerical modelling and simulation offers the possibility of the 
optimization of the current leads for cryogenic applications. The two models 
1D and 2D show the existence of an optimal value of the lead's radius. The 
model 1D rather gives a qualitative description while the model 2D gives a 
complete description of the thermal field and therefore the possibility to 
calculate all thermal fluxes that participate in the thermal balance. Besides, the 
knowledge of the thermal flux toward the cryogenic enclosure permits the 
control of the use of the cryogenic liquid.    

   



Ioan Popa, Florian Ştefănescu - Numerical modeling of the isolated current 
leads for cryogenic applications 

 408

 
References : 
   
[1] Donadieu L., Dammann C. (1968). Étude des traversées de courant pour 
enceinte cryogénique, Revue générale de l’électricité, Tome 77, No 2, Février 
1968. 
[2] Popa I. (2002). Modélisation numérique du transfert thermique. Méthode 
des volumes finis, Maison d’édition Universitaria, Craiova. 
[3] Arkaharov A., Marfenina I., Mikulin V. (1981). Theory and Design of 
Cryogenic Systems, Mir Publishers Moscow. 
[4] Popa, I., Stefănescu, F. (2003). Modélisation du régime thermique des 
traversées de courant cryogéniques, 4th International Conference on 
Electromechanical and Power Sistems, SIELMEN 2003, Chişinău, 26-27 
september 2003 (Republic Moldova), pp. 155-158. 
[5] Giese R.F., Runde, M. (1993). Assessment Study of Superconducting Fault-
Current Limiters Operating at 77 K, IEEE Transaction on Power Delivery, 
Vol. 8, No. 3, July 1993, pp. 1138-1147. 
[6] Hilal, M.A. (1977). Optimization of Current Leads for Superconducting 
Systems, IEEE Transaction on Magnetics, Vol. MAG13, No. 1, January 1977, 
pp. 690-693. 
 
 
Authors: 
Ioan Popa - University of Craiova, Romania 
Florian Ştefănescu - University of Craiova, Romania 


