
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics - ICTAMI 2004, Thessaloniki, Greece

306

PARALLEL COUNTER – PROPAGATION NETWORKS

by
Athanasios I. Margaris, Efthimios Kotsialos

Abstract: The objective of this research is to construct parallel models that simulate the
behavior of artificial neural networks. The type of network that is simulated in this project is
the counter – propagation network and the parallel platform used to simulate that network is
the message passing interface (MPI). In the next sections the counter – propagation algorithm
is presented in its serial as well as its parallel version. For the latter case, two approaches are
presented, one that is based to the concept of the inter-communicator and one that uses remote
access operations for the update of the weight tables and the estimation of the mean error for
each training stage.
Keywords: Neural networks, counter – propagation, parallel programming, message passing
interface, communicators, process groups, point to point and collective communication.

Introduction

As it is well known, one of the major drawbacks of the artificial neural

networks is the time consumption and the high cost associated with their
learning phase [1]. These disadvantages, combined with the natural parallelism
that characterizes the operation of these structures, force the researchers to use
the hardware parallelism technology to implement connectionist models that
work in a parallel way [2]. In these models, the neural processing elements are
distributed among independent processors and therefore, the inherent structure
of the neural network is distributed over the workstation cluster architecture.
Regarding the synapses between the neurons, they are realized by suitable
connections between the processes of the parallel system [3].

A parallel neural network can be constructed using a variety of different
methods [4-9], such as the parallel virtual machines (PVM) [10], the message
passing interface (MPI) [11-13], the shared memory model and the implicit
parallelization with parallel compiler directives [14]. Concerning the network
types that have been paralellized by one of these methods, they cover a very
broad range from the supervised back propagation network [15-17] to the
unsupervised self-organizing maps [18-19]. In this research the counter –
propagation network is parallelized by means of the message passing interface
library [13].

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 307

The serial counter – propagation algorithm

Counter-propagation neural networks [20] were developed by Robert
Hecht-Nielsen as a means to combine an unsupervised Kohonen layer with a
teachable output layer known as Grossberg layer. The operation of this network
type is very similar to that of the Learning Vector Quantization (LVQ) network
in that the middle (Kohonen) layer acts as an adaptive look-up table.

The structure of this network type is shown in Figure 1. From this figure
it is clear that the counter-propagation network is composed of three layers: an
input layer that reads input patterns from the training set and forwards them to
the network, a hidden layer that works in a competitive fashion and associates
each input pattern with one of the hidden units, and the output layer which is
trained via a teaching algorithm that tries to minimize the mean square error
(MSE) between the actual network output and the desired output associated
with the current input vector. In some cases a fourth layer is used to normalize
the input vectors but this normalization can be easily performed by the
application (i.e. the specific program implementation), before these vectors are
sent to the Kohonen layer.

Figure 1: A typical counter – propagation network

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 308

Regarding the training process of the counter-propagation network, it can

be described as a two-stage procedure: in the first stage the process updates the
weights of the synapses between the input and the Kohonen layer, while in the
second stage the weights of the synapses between the Kohonen and the
Grossberg layer are updated. In a more detailed description, the training
process of the counter – propagation network includes the following steps:

STAGE A Performs the training of the weights from the input to the

hidden nodes

STEP 00: The synaptic weights of the network between the input and the

Kohonen layer are set to small random values in the interval [0, 1].
STEP 01: A vector pair (x, y) of the training set, is selected in random
STEP 02: The input vector x of the selected training pattern is

normalized
STEP 03: The normalized input vector is sent to the network
STEP 04: In the hidden competitive layer the distance between the

weight vector and the current input vector is calculated for each hidden neuron
j according to the equation

∑
=

−=
K

i
ijjj wxD

1

2)(,

where K is the number of the hidden neurons and wij is the weight of the
synapse that joins the ith neuron of the input layer with the jth neuron of the
Kohonen layer.

STEP 05: The winner neuron W of the Kohonen layer is identified as the
neuron with the minimum distance value Dj.

STEP 06: The synaptic weights between the winner neuron W and all M
neurons of the input layer are adjusted according to the equation

))()(()()1(tWxttWtW wiiwiwi −+=+ α .

In the above equation the α coefficient is known as the Kohonen learning

rate. The training process starts with an initial learning rate value α0 that is
gradually decreased during training according to the equation

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 309

)1()(
T
tt o −=αα ,

where T is the maximum iteration number of the stage A of the algorithm. A
typical initial value for the Kohonen learning rate is a value of 0.7.

STEP 07: The steps 1 to 6 are repeated until all training patterns have
been processed once. For each training pattern p the distance Dp of the winning
neuron is stored for further processing. The storage of this distance is
performed before the weight update operation.

STEP 08: At the end of each epoch the training set mean error is
calculated according to the equation

∑
=

=
P

k
ki D

P
E

1

1
,

where P is the number of pairs in the training set, Dk is the distance of the
winning neuron for the pattern k and i is the current training epoch.

The network converges when the error measure falls below a user

supplied tolerance value. The network also stops training in the case where the
specified number of iterations has been performed, but the error value has not
converged to a specific value.

STAGE B Performs the training of the weights from the hidden to the

output nodes

STEP 00: The synaptic weights of the network between the Kohonen and

the Grossberg layer are set to small random values in the interval [0, 1].
STEP 01: A vector pair (x, y) of the training set, is selected in random
STEP 02: The input vector x of the selected training pattern is

normalized
STEP 03: The normalized input vector is sent to the network
STEP 04: In the hidden competitive layer the distance between the

weight vector and the current input vector is calculated for each hidden neuron
j according to the equation

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 310

∑
=

−=
K

i
ijjj wxD

1

2)(,

where K is the number of the hidden neurons and wij is the weight of the
synapse that joins the ith neuron of the input layer with the jth neuron of the
Kohonen layer.

STEP 05: The winner neuron W of the Kohonen layer is identified as the
neuron with the minimum distance value Dj. The output of this node is set to
unity while the outputs of the other hidden nodes are assigned to zero values.

STEP 06: The connection weights between the winning neuron of the
hidden layer and all N neurons of the output layer are adjusted according to the
equation

))(()()1(tWytWtW jwjjwjw −+=+ β

In the above equation the β coefficient is known as the Grossberg

learning rate
STEP 07: The above procedure is performed for each training pattern. In

this case the error measure is computed as the mean Euclidean distance
between the winner node's output weights and the desired output, that is

∑ ∑∑
= = =

−==
N

j

P

j

N

k
kjkj wy

P
D

P
E

1 1 1

2)(11

As in stage A, the network converges when the error measure falls below

a user supplied tolerance value. The network also stops training after
exhausting the prescribed number of iterations.

The parallel counter – propagation algorithm

The parallelization of the counter propagation algorithm presented in this

paper is based on the message-passing interface (MPI) standard [13], which
enables a set of processes to run concurrently on the same or different
processors, and to exchange messages between each other. To simulate the
counter propagation network, a separate process is used to model the behavior
of each neuron [14]. This fact leads to a number of processes P equal to
M+K+N where M is the number of the input neurons, K is the number of the
Kohonen neurons and N is the number of the Grossberg neurons, respectively.

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 311

Since the number of the parameters M, K and N is generally known in
advance, we can assign to each process a specific color. The processes with
ranks in the interval [0, M-1] are associated with an “input” color; the
processes with ranks in the interval [M, M+K-1] are associated with a
“Kohonen” color, while the processes with ranks in the interval [M+K,
M+K+N-1] are associated with a “Grossberg” color. Having assigned to each
process one of these three color values, we can divide the process group of the
default communicator MPI_COMM_WORLD into three disjoint process
groups, by calling the function MPI_Comm_split with arguments
(MPI_COMM_WORLD, color, rank, &intraComm). The result of this function
is the creation of three process groups – the input group, the Kohonen group
and the Grossberg group; each one of them simulates the corresponding layer
of the counter propagation network. The size of each group is identical to the
number of neurons of the corresponding layer, while the communication
between the processes of each group is performed via the intracommunicator
intraComm, created by the MPI_Comm_split function. The division of the
initial process group in this arrangement is shown in Figure 2.

After the creation of the three process groups, we have to setup a
mechanism for the communication between them. In the message-passing
environment, this communication is performed via a special communicator
type known as intercommunicator that allows the communication of process
groups. In our case, we have to setup one intercommunicator for the message
passing between the processes of the input group and the Kohonen group, and a
second intercommunicator for the communication between the processes of the
Kohonen group and the Grossberg group. The creation of these
intercommunucators, identified by the names interComm1 and interComm2
respectively, is based on the MPI_Intercomm_create function and the result of
the function invocation is shown in Figure 3.

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 312

Figure 2: The division of the initial process group to the input, Kohonen
and Grossberg sub-groups of processes

Figure 3: The message passing between the three process groups is

performed via the intercommunicators interComm1 and interComm2

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 313

After the construction of the communication system, the training

algorithm can be easily performed. In the first step the training set data are
passed to the processes of the input and the output group according to the next
figure, fig. 4. Since the number of input processes is equal to the size of the
input vector, each process reads a “column” of the training set that contains the
values of the training patterns with a position inside the input vectors equal to
the rank of each input process. The distribution of the output vector values to
the processes of the output group is performed in a similar way. The
distribution of the pattern data to the system processes is based to the MPI I/O
functions and to the establishment of a different file type and file view for each
input and output process.

Figure 4: The distribution of the training set data to the input and the

output processes for a training set of 12 training patterns with 8 inputs and 4
outputs

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 314

After the distribution of the training set data, the two stages of the
counter propagation training can now be performed. The steps described in the
following description are performed for each training cycle and for each
pattern of the training set. In this description, the notation Pn is used to denote
the process with a rank value equal to n.

STAGE A Performs the training of the weights from the input to the

Kohonen processes

STEP 0: A two dimensional K x M matrix that contains the synaptic

weights between the input and the Kohonen process group is initialized by
process P0 to small random values in the interval [0, 1] and is broadcasted by
the same process to the processes of the default communicator
MPI_COMM_WORLD. A similar initialization is done for a second matrix
with dimensions M x N that contains the synaptic weight values between the
Kohonen and the Grossberg process groups.

STEP 1: Process P0 of the input group picks up a random pattern position

that belongs in the interval [0, PAIRS-1] where PAIRS is the number of the
training vector pair. Then, this value is broadcasted to all processes that belong
to the input group. This broadcasting operation is performed by a function
invocation of the form MPI_Bcast (&nextPattern, 1, MPI_DOUBLE, 0,
intraComm). At this stage we may also perform a normalization of the data set.

STEP 2: Each function calls MPI_Bcast to read the next pattern position

and then retrieves from its local memory the input value associated with the
next pattern. Since the distribution of the training set data is based in a
“column” fashion (see Figure 4), this input value is equal to the
inputColumn[nextPattern] where the inputColumn vector contains the (rank)th
input value of each training pattern. The steps 1 and 2 of the parallel counter
propagation algorithm are shown in the next figure (Figure 5).

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 315

Figure 5: The retrieval of the training pattern input values from the
processes of the input group

STEP 3: After the retrieval of the appropriate input value of the current

training pattern, each process of the input group sends its value to all processes
of the Kohonen group. This operation simulates the full connection architecture
of the actual neural network and it is performed via the MPI_Alltoall function
that is invocated with arguments (&input, 1, MPI_DOUBLE, inputValues, 1,
MPI_DOUBLE, interComm1). Since this operation requires the
communication of processes that belong to different groups, the message
passing function is performed via the intercommunicator interComm1, which is
used as the last argument in the function MPI_Alltoall. An alternative (and
apparently slower) way is to force input process P0 to gather these values and
to send them via the inter-communicator interComm1 to the group leader of the

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 316

Kohonen group, which, in turn, will pass them to the Kohonen group
processes. However, this alternative approach is necessary, if the training
vectors are not normalized. In this case, the normalization of the input and the
output vectors has to be performed by the group leaders of the input and the
Grossberg groups before their broadcasting to the appropriate processes.

STEP 4: The next step of the algorithm is performed by the units of the

Kohonen layer. Each unit calculates the Euclidean distance between the
received vector of the input values and the appropriate row of the weight table
that simulates the corresponding weight vector. After the estimation of this
distance, one of the Kohonen group processes is marked as the root process to
identify the minimum input weight distance, and the process that corresponds
to it. This operation simulates the winning neuron identification procedure of
the counter propagation algorithm. This identification is performed by the
MPI_Reduce collective operation, which is called with the value
MPI_MINLOC as the opcode argument. The minimum distance for each
training pattern is stored in a buffer, later to participate to the calculation of the
mean winner distance of the current training epoch.

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 317

Figure 6: The identification of the winning process from the processes of

the Kohonen group

STEP 5: The winning process updates the weights of its weight table

row, according to the equation

))(()()1(tWxtWtW wiiwiwi −+=+ α ,

which is used as in the case of the previous network implementation. In this
step, the Kohonen learning rate α is known to all processes, but it is used only
by the winning process of the Kohonen group to perform the weight update
operation described above. This learning rate is gradually decreased at each
iteration, as in the serial algorithm. Since each process uses its own local copy
of the weight table, the table with the new updated values is broadcasted to all
the processes of the Kohonen group. The weight update operation by the
winning process is shown in the next figure, fig. 7.

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 318

The previously described steps are performed iteratively for each
training pattern and training cycle. The algorithm will terminate when the mean
winner distance falls below the predefined tolerance or when the number of
iterations reaches the maximum iteration number.

Figure 7: The update of the synaptic weights associated with the winning

process

STAGE B Performs the training of the weights from the Kohonen to
the Grossberg nodes

STEP 0: Process P0 of the input group picks a random pattern position

and broadcasts it to the processes of the input group.

STEP 1: Each process of the input group calls the MPI_Bcast function to

read the next pattern position. Then it retrieves this position from the
inputColumn local vector and by using the MPI_Alltoall function sends it to
the set of processes that belong to the Kohonen group.

STEP 2: Each process of the Kohonen group calculates the distance

between the current input vector and the associated weight vector – this vector

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 319

is the Rth row of the input – Kohonen weight matrix where R is the rank of the
Kohonen process in the Kohonen group. Then one of the Kohonen processes is
marked as the root process to identify the minimum distance and the process
associated with it. The identification of this distance is based to the
MPI_Reduce collective operation. The process with the minimum distance
value is marked as the winner process. The output of this winner process is set
to unity, while the outputs of the remaining processes is set to zero.

STEP 3: Each Kohonen process sends its output to the set of processes of

the Grossberg group via the MPI_Alltoall inter-communicator function. Then,
each output process calculates its own output according to the equation

∑
=

=
K

i
ijjj WXO

1

In this equation we use the notation Xj to denote the inputs of the

Grossberg processes – this inputs are coming from the Kohonen processes and
therefore their values are 1 for the winning process and 0 for the remaining
processes, while Wij are the weights associated with the jth output process.
These weights belong to the jth row of the Kohonen-Grossberg weight matrix.
After the calculation of the output of each Grossberg process we estimate the
Euclidean distance between the real output vector (O0, O1, O2, …, ON-1) and the
desired output vector (Y0, Y1, Y2, …, YN-1). The stage B is completed when the
mean error value for each training epoch falls below a user – supplied tolerance
or when the number of iterations reaches the predefined maximum iteration
number. Regarding the weigh update operation, this is applied only to the
weights of the winning process of the Kohonen layer in the Kohonen –
Grossberg weight matrix. The weight update operation is performed as it is
shown in Figure 7 but for the Kohonen – Grossberg matrix and it is based to
the equation

))(()()1(tWytWtW jwjjwjw −+=+ β ,

which was used also in the case of the serial algorithm. The β constant in the
above equation is known as the Grossberg learning rate – a typical value of this
parameter is 0.1.

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 320

The recall phase

In the recall phase each input pattern is presented to the network. In the

hidden layer the winning neuron is identified, its output is set to unity (while
the outputs of the remaining neurons are set to zero), and, finally, the network
output is calculated according to the algorithm described above. Then the real
network output is estimated and the error between it and the desired output is
identified. This procedure is applied to training patterns that belong to the
training set and are presented to the network for testing purposes, while for
unknown patterns, they are sent to the network, to calculate the corresponding
output vector. This procedure can be easily modified to work with the parallel
network, by adopting the methods described above for the process
communication. It is supposed that the unknown patterns will be read from a
pattern file with a similar organization as the training set file – in this case each
input process can read its own (rank)th value, in order to forward it to the
processes of the Kohonen group.

RMA Based Counter Propagation Algorithm

The main drawback of the parallel algorithm presented in the previous

sections is the high traffic load associated with the weight table update for both
training stages (i.e. stage A and stage B). Since each process maintains a local
copy of the two weight tables (the input – Kohonen weight table and the
Kohonen – Grossberg weight table), it has to broadcast these tables to all the
processes of the Kohonen and Grossberg group in order to receive the new
updated weight values. An improvement of this approach can be achieved by
using an additional process that belongs to its own target group. This target
process maintains a unique copy of the two weight tables and each process can
read and update the weight values of these tables via remote memory access
(RMA) operations. This new improved architecture of the counter propagation
network is shown in Figure 8.

In this approach the additional target process creates and maintains the
weight tables of the neural network while each process of the Kohonen and the
Grossberg group reads the appropriate weights with the function MPI_Get and
updates their values (by applying the equations described above). This can be
done using the function MPI_PUT. An optional third window can be used to
store the minimum input weight distance for each training pattern and for each
epoch. In this case one of the processes of the Kohonen group can use the

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 321

MPI_Accumulate function (with the MPI_SUM opCode) to add the current
minimum distance to the window contents. In this way, at the end of each
epoch this window will have the sum of these distances that is used for the
calculation of the mean error for stage A; a similar approach can be used for
the stage B. The synchronization of the system processes can be performed
either by the function MPI_Win_Fence or by the set of four functions
MPI_Win_Post, MPI_Win_start, MPI_Win_complete and MPI_Win_wait,
which are used to indicate the beginning and the termination of the access and
the exposure epochs of the remote process target windows.

Figure 8: RMA based counter propagation network

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 322

Conclusions and Future Work

The objective of this research was the parallelization of the counter –

propagation network by means of the message-passing interface (MPI). The
development of the application was based to the MPICH2 implementation of
the MPI of Argonne National Laboratory that supports advanced features of the
interface, such as parallel I/O and remote memory access functions. This
parallelization was applied on two different aspects: (a) the training set patterns
were distributed to the processes of the input group in such a way that each
process retrieves the (rank)th column of the set with P values, where (rank) is
the rank of the process in the input group. This distribution is applied for the
input vectors as well as for the output vectors that are distributed to the
processes of the Grossberg group. (b) the two – dimensional weight tables were
distributed to the processes of the Kohonen group with each table row to be
associated with its corresponding Kohonen process.

 The next step of this research is the presentation of comparative results
between the serial and the parallel versions. This could not be affected at the
moment, since the development took place on a single—processor machine,
where the performance of the two approaches was almost the same. In order to
measure the speedup of the parallel algorithm, a multiprocessing system – such
as a dual processor PC, a computational grid or a computer network – is
necessary, but this system was not available at the time of the paper writing.
Therefore we point out the main guidelines that one has to follow to build a
parallel neural network – a more practical approach on this subject is one of the
immediate future work subjects.

There are many topics that are open in the design and implementation of
parallel neural networks. By restricting ourselves to the development of such
structures via MPI, it is of interest to investigate the improvement achieved if
non-blocking communications are used – in this research the data
communication was based on the blocking functions MPI_Send and
MPI_Recv. Another very interesting topic is associated with the application of
the models described above for the simulation of arbitrary neural network
architectures. As it is well known, the counter – propagation network is a very
simple one, since is has (in the most cases) only three layers. However, in
general, a neural network may have as many as layers the user wants. In this
case we have to find ways to generate process groups with the correct structure.
Furthermore, in our design, each processes simulated only one neuron; an
investigation of the mechanism that affects the performance of the network

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 323

when we assign to each process more than one neurons, is a challenging
prospect.

For all these different situations, one has to measure the execution time
and the speedup of the system in order to draw conclusions for the simulation
of neural networks by parallel architectures. Finally, another point of interest is
the comparison of the MPI – based parallel neural models with those that are
based on other approaches, such as parallel virtual machines (PVM).

References:

[01] Simon Haykin: “Neural Networks – A Comprehensive Foundation”,
Prentice Hall, 1994, ISBN 0-132-73350-1.

[02] Yann Boniface, Frédéric Alexandre, Stéphane Vialle: “A Bridge between
two Paradigms for Parallelism: Neural Networks and General Purpose MIMD
Computers”, in Proceedings of International Joint Conference on Neural
Networks, (IJCNN’99) 1999, Washington, D.C.

[03] Thomas Fuerle and Erich Schikuta: “PAANS – A Parallelized Artificial
Neural Network Simulator”, in Proceedings of 4th International Conference on
Neural Information Processing (ICONIP’97), Dunedin, New Zeland, Springer
Verlag, November 1997.

[04] Russell K. Standish: “Complex Systems Research on Parallel Computers”,
Web Text, http://parallel.hpc.unsw.edu.au/rks/docs/parcomplex

[05] Erich Schikuta: “Structural Data Parallel Neural Network Simulation”, in
Proceedings of 11th Annual International Symposium on High Performance
Computing Systems (HPCS’97), Winnipeg, Canada, July 1997.
[06] N. B. Serbedzija: “Simulating Artificial Neural Networks on Parallel
Architectures”, Computer 29 (3), pages 56-63, May 1996, ISSN 0018-9162.

[07] Eric Schikuta, Thomas Fuerle and Helmut Wanek: “Structural Data
Parallel Simulation of Neural Networks”, Journal of System Research and
Information Science, Volume 9, pages 149 – 172, Gordon and Breach
Publishing Group, 2000.

[08] Manavendra Misra: “Implementation of Neural Networks on Parallel
Architectures”, PHD Thesis, University of Southern California, December
1992.

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 324

[09] Manavendra Misra: “Parallel Environment for Implementing Neural
Networks”, Neural Computing Surveys, 1, pages 48 – 60.

[10] Mathias Quoy, Sorin Moga, Philippe Gaussier and Arnaud Revel:
“Parallelization of Neural Networks Using PVM”, in J. Dongarra, P. Kacsuk
and N. Podhorszki (Eds.): “Recent Advances in Parallel Virtual Machines and
Message Passing Interface”, pages 289 – 296, Berlin, 2000, Lecture Notes on
Computer Science 1908, Springer Verlag.

[11] Mark Snir et al: “MPI – The Complete Reference, Volume 1: The MPI
Core”, 2nd Edition, Scientific and Engineering Computational Series, The MIT
Press, Massachusetts, 1998, ISBN 0-262-69215-5.

[12] William Cropp et al: “MPI – The Complete Reference, Volume 2: The
MPI Extensions”, Scientific and Engineering Computational Series, The MIT
Press, Massachusetts, 1998, ISBN 0-262-57123-4.

[13] Peter Pacheco: “Parallel Programming with MPI”, Morgan Kaufmann
Publishers Inc, San Francisco, California, 1997, ISBN 1-55860-339-5.

[14] Yann Boniface, Frédéric Alexandre, Stéphane Vialle: “A Library to
Implement Neural Networks on MIMD Machines”, in Proceedings of 6th
European Conference on Parallel Processing (EUROPAR’99), Toulouse,
France, pages 935 – 938.

[15] Jim Torresen et al: “Parallel Back Propagation Training Algorithm for
MIMD Computer with 2D – torus Network”, in Proceedings of 3rd Parallel
Computing Workshop (PCW’94), 1994, Kawasaki, Japan.

[16] Jim Torresen, Shinji Tomita: “A Review of Parallel Implementation of
Back Propagation Neural Networks”, Chapter 2 in the book of N. Sundararajan
and P. Saratchandram (Eds.): “Parallel Architectures of Artificial Neural
Networks”, IEEE CS Press, 1998, ISBN 0-8186-8399-6.
[17] V. Kumar, S. Shekhar, M. B. Amin: “A Scalable Parallel Formulation of
the Back Propagation Algorithm for Hypercubes and Related Architectures”,
IEEE Transactions on Parallel and Distributed Systems, Volume 5, Issue 10,
pages 1073 – 1090, 1994, ISSN 1045-9219.

[18] Li Weigang, Nilton Correia da Silva: “A Study of Parallel Neural
Networks, in Proceedings of International Joint Conference on Neural
Networks”, Volume 2, pages 1113-1116, 1999, Washington, D.C.

 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation
networks

 325

[19] Philipp Tomsich, Andreas Rauber and Dieter Merkl: “Optimizing the
parSOM Neural Network Implementation for Data Mining with Distributed
Memory Systems and Cluster Computing”, in Proceedings of 11th International
Workshop on Databases and Expert Systems Applications, September 2000,
Greenwich, London UK, pages 661 – 666.

[20] James A. Freeman, David M. Skapura: “Neural Networks: Algorithms,
Applications, and Programming Techniques”, Addison-Wesley Publishing
Company, 1991, ISBN 0-201-51376-5.

Authors:
Athanasios I. Margaris - University of Macedonia, Thessaloniki, Greece, E-
mail address: amarg@uom.gr
Efthimios Kotsialos - University of Macedonia, Thessaloniki, Greece, E-mail
address: ekots@uom.gr

