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Abstract. For systems of delay differential equations the Hopf bifurcation was investigated
by several authors. The problem we solve here is that of the possibility of emergence of a
codimension two bifurcation, namely the Bautin bifurcation, for some such systems.
Keywords: bifurcation theory, Bautin, delay differential equation

1. Introduction

The existence of periodic solutions for evolution equations is of certain
interest for both pure and applied mathematicians. Even for bidimensional
systems of differential equations the detection of limit cycles by theoretical
means is difficult. The bifurcation theory offers a strong tool for finding limit
cycles, namely the theory concerning the Hopf bifurcation (when there is a
varying parameter)[2], [6]. Several authors studied the Hopf bifurcation for
delay differential equations (e.g. [4], [7], [1], [5] ). We are interested to find
sufficient conditions for the Bautin bifurcation for a class of such systems.

2. Setting of the problem, theoretical frame
Consider a system of the form

x(t) = Al )x(t) + B(a)x(t —r)+ f (x(t), x(t -r) @), (1)

X(s)=¢(s) se[-r.0], )

where X =(X,,..., X,)€R", a=(a,a,)eR? Aa),B(e) are nxn matrices
over R, f = (fl, s fn) is continuously differentiable on its domain of
definition, D < R*™'. Moreover, f(0,0,a)=0and the differential of f in the
first two vectorial variables, calculated at (0,0,a)is equal to zero. ¢is an

element of the Banach space B = C([— r,O], R”) (column vectors). In order to
write eq. (1) as a differential equation in a Banach space, the space
B, = iy :[-r,0] > R",wis continuous on [ r,0)and Ilimy(s) € R" }
s—0"
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i1s considered in section 8.2 of [4]. Its elements are y =¢ + X,0, with

¢ € B, o0 € R" (column vector) and

Xo(s) = {

where 0,1 are the zero and, respectively, the unity nxn matrix. The norm of

0, —r<s<o0
l,, s=0,

y is defined as the sum of the norm of ¢ in Band the norm of oin R". The

complexifications B.,B,. of B, respectively B, are used below.
Considero(-)- the Dirac function, and the nxn matrix valued function

A(S)=6(s)l, . Also consider the bounded linear operator L, : B — R",

L= dn,(9p(9),
with 77, (S) = Al@)A(S) — B(a)A(S+r). By denoting

X (S) = x(t+s), se[-r0],
we have in the spirit of [4], the following relations, equivalent with (1), (2):

(0= L,00)+ Fx 0% (N ®
o %

a9 s @

X, =¢@. ()

Define (see also [4]) the linear operator, Aa Q= (;)+ XO[LQ (p)— (p(O)},

A.:C' ([— r,0lR" )c BC — BC. Now we can rewrite the above problem as
d ~
S = A X PO (0), (1), @), (6)

dt
X, = . (7)
The last term of (6) may be written as

X, £ (] da(9%,(s). [ dA(s+1)x,(8).a).
We define F(x,a)= f(fr dA ()X (S), j° dA(s+ )X (S),@). Thus (6) and
(7) take the form

d ~
d—)itzAaxtJrXOF(xt,a), @®)
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XO = (/’ b (9)
this being the abstract problem in B, equivalent to (1),(2).

The eigenvalues of Aa are (see [4]) the roots of the equation
det(2l - Ala)-e " B(a))=0.

We assume the following hypothesis, that we denote H1.
H1. An open set U existsin the parameter plane such that for every o €U
thereisa pair of complex conjugated simple eigenvalues

A 5(@)= pula) tio(a), with the property that thereisa «, €U such that
Ay ay) = tiw(e, ) = tiw,, with @, > 0 and for every o €U , all other

eigenvalues have strictly negative real parts, uniformly bounded from above by
a negative number.

By a simple eigenvalue we mean an eigenvalue having the algebraic
multiplicity equal to 1.

We remark that H1 implies the existence of a neighborhood of «, such that
each eigenvalue different from 4, , (a) has real part strictly less than ,u(a).

The eigenvectors corresponding to A, (a), i=1,2, are elements of B, -the
complexification of B, namely

o, (@)s)=e""p(a)0). se[-r0].
where ¢,()(0) is a solution of (ﬂ,, (@)l = Ala)- g hler B(a))<p = 0. Obviously,
(02(05)=51(05)-

Denote by M{ﬂm(a)} the linear subspace of B., spanned by
{o, (a), 0, (a)} and CD(a) the matrix having as columns the vectors
o, (@), ¢,(). Let {v,(a).w,(a)} be two eigenvectors for the adjoint problem
([3], [4]), corresponding to the eigenvalues —4,,(a) of the infinitesimal
generator of the adjoint problem. They are elements of Bg- the

complexification of B" = C([O,r],R”) -row vectors, and we assume that they
are selected such that, W(a) being the matrix having as rows the vectors
v, (a)w,(a), the relation (P(a)o(a) =1, holds, where
(-,-):B. x B, — C is defined by
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. 9) =y (0)p(0)- [ [w(& - 0)dn, (O)p(&)dé,  weB, peB..

-ro

In [4] a projection 7:Bye >My (), is defined by
7(p + X,a) = ®()[(P(er). @)+ P(0)] . With this projection the space B,is
decomposed as By, =My, @ Kerz. Since the solution X of (8) and (9)

belongs to C'([-r,0],R"), it is decomposed as
X = O(a)u(t) + y(1), (10)

with u(t) = (¥(a), %, )and y(t) = (I — 7)X,, where u(t) = (z(t), z(t)) -column
vector, z(t) e C.
Let us define

0
B(a)= (ﬂq(a) B j
0 2“1 ()
The projection of eq. (8) on M Uia(@) is

®(a)u = ()B(ar)u+ () ¥(a O)F (d(c)u(t) + y(t), @),
and since ®(«) is invertible, this is equivalent to

U = B(a)u+¥(a)0)F (@(a)u(t) + y(t).a). (11)
By projecting the initial condition we find
u(0) = (¥(a), ).

3. Existence of theinvariant manifold and therestricted equation
If aeU\{g,}, and Re/L’z(a)>0 then, since these are the only two

eigenvalues with positive real part (and they are simple), there is a local
invariant manifold for the problem, namely the local unstable manifold, tangent
to the space My, (). [3], [7].

For a =¢,, since Re /11,2(0‘0): 0, there is a local invariant manifold for
the problem, namely the local center manifold, tangent to the space M, (, .
[7].

Hence, for every aeU with ,u(a)z 0, there is a neighborhood
V(a)of0 e B, and a local invariant manifold W, (et)cV(e), which is the
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graph of a C'function. That is, the local invariant manifold may be expressed
as

W (@)= {‘P +W,(p):peM 1 (a)) mV(a)},
where w, :My, > Kerz is a C' function, w,(0)=0, and it has zero
differential at 0. Since @ e My, (., we have go(a): zp, (a)+251(a), with
ze C. This relation induces a dependence of 7z to w, (gp)that justifies the

notation W, (p)=w, (Z,E).

Equation (11) implies
2(t) = 4, (@)2(t) + v, (@O F (2D, (o) + 2D, (@) + W, (Z(t). Z(1)), ).
(12)
2(0) = (w, (@), p). (13)

Let S, (t)¢ be the solution of eq. (1) corresponding to the initial condition
@, at the moment t .
If ¢ W, (a),then
S, (D¢ = 2V, () + 2V, (@) + W, (1), 1)) (14)

By using again the function f, (12) becomes

2(t) = A (e)2(t) + v, (@)0) f (S, (D$(0), S, (Dg(-1), @),

(15)
or,
2(t) = 4, (a)2(t) + 9(2t), 2(t) . @), (16)
by denoﬁing
9(z(H), 2(t), @) =y, (@) 0) f (S, (1¢(0), S, (DP(-T), ). (17)

4. The equationsfor theinvariant manifold
The following proposition is a natural consequence of the invariance of

W (a). A similar result is given in [7], on the center manifold. We give the

loc
proof for the sake of completeness.
Proposition 1. Let ¢ €W, _(r)be the initial value for the problem (1). Then the

function w, satisfies the following equations
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0

oW (2(t), Z(1)(S) + 9(Z(L), Z(t), @), (@ )(S) + Q(Z(L), Z(t), @), (e )(S) =

w0, sel-rol,
(18)

§WQ<z(t),E(t))(0>+ 9(2(t), 2(t), @), ()0) + 9(2(t), Z(t), @), (@ )0) =

= AW, (Z(t), 2(1))(0) + B(a)W,, (Z(t), Zt)(—1) + f (S, (DF(0), S, (DA(-T). )
(19)
with z(t) solution of the Cauchy problem (16),(13) and g defined by (17).
Proof Since ¢ €W, () and W _(c)is invariant, S, (t)¢ e W ().

Let us denote, for t >0 and se[-r,0], S, (1)¢(s) = x(g)(t+5).
Obviously

aX(¢) X (¢)

——=(t+s)=——(t+59).

This and (14) imply

£ w, (2(0,20)(6)+ 200, (aX9) + 207, (@Xs) =
(20)

=% w, (20, Z0)(8)+ 20 ¢ (@)9) + 2 9, (X9

(here go.l (a)(s) = % o, (a)(s) ) and thus

gwa (2(t), Z0)(s) + [’z(t) -2 (a)}pl (@)(9) + [Ea) - M}Z(a)(s) = % w, (2(t), 2(1))(s)
(21)
With (16) we obtain (18).
On another side, since S, ()¢ is a solution of equation (1), we have

20, ()9 + 2O @)s) + %wa (z(t), 2(1))(s) = A@)S, (1)#(S) + B(a)S, (t — 1)¢(S) +
+ (S, (1)¢(3), S, (t—1)é(9)),
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and, by taking S=0, we obtain (19).

This proposition allows the determination of the coefficients of the series of

powers in zand z of the function W, . Indeed, let us write

f(S,(1)¢(0), S, (Dg(-1),a)= > ﬁF,-k(a)z’Ek, (22)
jrk22 )oK
g(z(t), z(t), o) = > _ngk(a)zjik, w,(0,22)= Y _—ij(ﬁ,a)z‘Ek
A JUK! e JUK!

(23)
where g, (o) =y, (0)F, ().
By replacing (22) and (23) in (18) and by matching the obtained series, we
get first order linear differential equations for w, .

Thus, equation (18) implies

5 ! dwik<s,a>zjzk=(z.Lg,.k<a>zfzkj¢1(a><s>+

jﬁ-kzzmE j+k=2 'k!
1 — —i = 1 e —k-1 =
+(,~£‘2Wgjk(a)ZJij(pl(a)(S)Jrjézmwjk(s’a)(ﬂ] 'z z+kz'z zj.
(24)

In this equality 2 and z will be replaced with the right hand side of (16) to
obtain

L d . (sa)l? :( Y ﬁgjk(a)zjikj%(“)(s)*

j+k22m dS j+k>2
1 — —i . |— 1 ] _ _
J{ 2 ngjk(a)Z'ijcol(a)(S)+ ijk(s,a)(m(a) +kA(@)2 2"+
j+k>2 Je jk=2 )T
1 ._i1zk 1 | Zm c—k-1 1 - —| _m
+ j;zmwjk(s,a{jzl Z (Iézm g,m(a)z VA J-i— kz! z (Iézm glm(a)z VA Jj
(25)

By matching the same order terms we obtain first order differential
equations for w, (.,@).

A relation similar to (25) is obtained by substituting the series (22), (23) in
(19), and by using (16) :
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> LW (0, 05)(M(“)+k/11(a))z z +

j+k>2 J'k'
1 Tk = k-1 o
* Zgigmsal i 7 L e re'? (2 L)
1 = 1 — —i
+ z -_gjk(a)ZJ Zk (01(0‘)(0)"' z -_gjk(a)zlzk (01(0‘)(0):
j+k>2 J!k! e JK!
_A()z Oazz+B(a)Z—W razz+z Jkoz)z‘
]+k>2 j+k>2 Jk j+k>2 - -
(26)

The relations obtained by equating the terms with similar powers of z, z in
(26) are used as conditions to determine the constants that appear in the general

form of w,, obtained above.
In this theoretical form the calculus is very lengthy and we do not make it
explicitly here.
We firstly remark that the coefficients of the second order terms in z and
Z in the expansion of f,(S, (t)#(0), S,(t)@#(-r),a),i =1,...,n, are independent
on those of w_, they depend only on the coefficients of the Taylor series of
f, (X, y,a). The similar assertion holds for the coefficients of g(z(t),E(t), a).
Hence Q,, (a), gn(a), Joo (a) are known, given f, and y, (a).
The following algorithm to determine w;, (r) must be used.
- Wy, (@), W, (@), w,, () are determined from the equations obtained by
identifying the terms containing Z°, 7z, z respectively, in (25), with
initial conditions obtained by the same method from (26); they depend

on gzo(“)n gn(a)’ 90 (0()
- Wy ()W, (@), Wy, (e)are used to compute g jk(a), j+k=3, (from

(14), (17), (23)) .

ij(a), jtk=3, are determined from the equations (25) and

conditions (26); they depend on ¢ jk(a), j+k<3.
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ij(a), j +k <3 are used to compute gjk(a), jtk=4 (from (14),
(17), (23) ).

- Wy (a) , J* k=4, are determined from the equations (25) and
conditions (26); they depend on g;, (a), j+k<4.
- ij(a), ] + k <4 are used to compute gjk(a), j+k=5.

We do not need so many terms to have an accurate form of the invariant
manifold, but we need them in order to discuss the behaviour of the solution z
of (16) that determines the solution of (1) on the invariant manifold.

5. The Bautin bifurcation
After applying the above algorithm, equation (16) has the form

2(t) = 2, () 2(t) + > —9g jk(a)ziEk +0Qz|6). (27)

2<j+k<5 ' k'

Now, let |,(@), |,(a)be the first and the second Lyapunov coefficient
respectively, associated to (27), defined in [6]. They are functions of g, ().
More specific, |,(«)is function of g,(«) with 2<k+1<3, and |,(a) is
function of g, () with 2<k+1<5.

Let us define, with [6], v, = M, v, =l (@), v=(,v,).
o(a)
Let us consider the following hypothesis, denoted H2.
H2. 1,(e,)=0, l,(e,)#0,andthemap (a,, a,) = (v,,v,) isregular at «, .

The value in ¢, of the first Lyapunov coefficient is

I () = ﬁRe(igzo((lo)gn(“o) + a)ogzl(ao))-

0
The value in ¢, of the second Lyapunov coefficient is much more

complicated and we do not reproduce it here (see [6]).

Th. 8.2. of [6] asserts that, if H2 is satisfied for eq. (16), then eq. (16) may be
transformed, by smooth invertible changes of the complex function z and time
reparametrizations, into

7= (v, +i)z+ v22|z|2 + LZ(V)Z|Z|4 +OQZ|6),

(28)
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where L, (v)=1,(a(v)).

We suppose that H2 is satisfied for our problem.

Problem (28) is then (see [6]) locally, near z=0, topologically equivalent to the
following complex normal form of the Bautin bifurcation

z=(p +i)z+ p.47 +s2z

where S, =v,,f, = 1/|L2(VXV2, s=sgnl,(e,).
Assume the third important fact denoted by H3.
H3. I, (e, )> 0 (hence s=1).
Consider the polar form of (29), in the hypothesis H3

4
b

(29)

p=pB +B.p* +p*)
=1,
with (p, 17) the polar co-ordinates.

(30)

Due to H2, there is a C'bijection T between a neighbourhood U, of «,, in the
(a,,a,) plane and a neighbourhood W of (0,0) in the (5,,5,) plane.

We study the behaviour of the solutions only for 8, >0 (4, and u(a)
have the same sign and we proved the existence of the invariant manifold only
for u(a)>0).

For those f eWwith S, >0, 5, 20, (30) has an repulsive focus in 0, and

so does (29). Then, since the dynamical system generated by (29) is
topologically equivalent to that generated by (16), this one has an unstable
equilibrium in 0 (a repulsive focus or node, since they cannot be distinguished
by topological equivalence).

In order to transport these conclusions to the solution of eq. (1), we remind
relation (14):

S, (D¢(0) = ()@, ()(0) + ()@, (2)(0) + W, (0, Z(1), Z(1)) -

It follows that for the corresponding (through T') zone of « plane, let us
denote it V,, equation (1) has 0 as an unstable equilibrium point (focus or node)
on the invariant manifold. Due to the relation between S, and u(a), this holds
on the unstable manifold for x(a)>0 and, for @, (where x(e,)=0) on the
center manifold.
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In the intersection of the quadrant S, >0, 5, <0 and W there is a zone,
situated between the axis 5, =0and the curve I = {(,6’1, 5, ); B, = —2\/51 }

where eq. B, + B,0° + p* =0 has no positive solutions and thus there are no

limit cycles for (30). The local phase portrait for (1) on the invariant manifold
is as described above (unstable equilibrium point), for the corresponding

(through T7') zone in the a plane, let us denote it by V,. Now let us put
V=V, uV,.
In the zone situated between the curve I' = {(,6’1, 5, ); B, = —2\/51 } and

the axis B,=0 eq. B +B,p°+p*'=0 has two positive solutions,
o (,6’), ol (ﬂ) Thus two concentric closed orbits for (30), hence for (29), exist.
Since, for the corresponding zone of the « plane (let us denote it byV '), the
problems (29) and (16) are topologically equivalent, eq. (16) will also have
two periodic solutions. Relation (14) shows that, in this case, on the unstable
manifold there exist two limit cycles for (1).

As we cross I', leaving the zone in the £ plane described above, the two
limit cycles collide and disappear.

6. Conclusions

The facts discussed above lead to the following result.

Theorem. If H1, H2, H3 are satisfied for eq. (1), then at ¢,a Bautin type
bifurcation takes place. There is a neighbourhood U, of ¢,in the « plane
having a subset V (with ¢, €V ) with the property that for every a eV , 0 is

an unstable equilibrium point (focus or node) for the problem (1) restricted to
the bidimensional invariant manifold defined above.

There is also a subset V* of U,, (having «,as a limit point) with the

property that for every o €V", the restriction of problem (1) to the unstable
manifold has two concentric limit cycles. In this case also 0 is an unstable
equilibrium point.

Let us remark that the interior limit cycle is attractive, while the exterior
limit cycle is repulsive.
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