
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics - ICTAMI 2004, Thessaloniki, Greece

146

SPEECH RECOGNITION APPLICATION
USING VOICE XML

by

Marieta Gâta

Abstract. This paper presents basic elements of simple, realistic application example that uses
VoiceXML programming. The core use cases were elaborated and diagrammed in UML. From
the use cases, a basic object model was derived and diagrammed. This example is practical
because it derives from a real application. This voice enabled application is the best practice of
application design, development and software engineering.
Keywords: VoiceXML, Voice User Interface, speech recognition, speech synthesis

VoiceXML

 HTML has roots in publishing. VoiceXML has a programming language
background. It has the impression of a programming language: control
constructs, variables, event handlers, nested scooping, and so on. At the
beginning, VoiceXML was designed to be a programming language easy to
learn, lightweight and interpreted for developing VUIs.
 VoiceXML renders content as speech and interacts with the user using
speech recognition and speech synthesis technologies.
 The way of Voice XML structures for interaction with user is dialogs. A
dialog is consisting of a sequence of prompts spoken by the computer and
responses spoken by a person. Responses given by the person by speak or key
using a keypad. In contrast with GUI windows which are multitasked and two-
dimensional, VUI Dialogs are sequential and linear by nature.
 Architecturally, VoiceXML interfaces are event-driven interfaces like
GUIs. In a dialog, the computer speaks a prompt and then waits for the user to
respond to it. The computer waits until a speech recognition event occurs. A
speech recognition event is initiated by the speech recognition engine, which is
continuously analyzing the user's speech and attempting to match it to expected
responses in the dialog. There are a lot of possible speech recognition events,
including “recognized responses ... ”, “got a responses but didn't recognize it”,
“no response” and so on. Unlike GUIs and WUIs, where the events that drive
the interface are low-level, non-equivocal incidences (button pressed, mouse
clicked, and so on), events in VoiceXML interfaces are the result of complex,
computation-intensive, possible processing with errors.

Marieta Gâta - Speech recognition application
using VoiceXML

 147

GUIs, WUIs, VUIs

 GUI, WUI and VUI represent the major markup language-based
browsing interfaces to the internet. GUI is the most fully developed of the three
is exemplified by products such us Netscape Communicator and Microsoft
Internet Explorer. WUI, the most next developed interfaces, is implemented by
“microbrowsers” embedded in wireless phones and personal digital assistants
(PDAs). VUIs (Voice User Interfaces) are just beginning to appear as browsing
interfaces to the internet, and they are driven by the standardization of
VoiceXML 1.0.
 The markup languages for these three types of interfaces are all based
on XML. XML is a markup metalanguage derived from SGML. XML
simplifies some of the complex and little-used features of SGML, but it still
provides a flexible and extensible base for defining specialized markup
languages.

User interface Browsing technology Organizing paradigm Usage
mode
GUI (graphical) HTML, XHTML Page
Monitor, keyboard, mouse
WUI (wireless) WML Card
 Portable handheld
VUI (voice) VXML Dialog Phone,
Microphone,

 Headset

 The paper presents an application that uses a simplified personal
information manager (SPIM). This application is a small personal information
manager with the features like: address book, appointment calendar and to-do
list. This application is accessible through voice and Web interfaces. The
developing of such application means:
 -Use Case Analysis
 -Top-Level Use Case
 -Edit Contact Information Use Case
 -Running Late Use Case
 -Review Schedule List Use Case
 -Object Model

Marieta Gâta - Speech recognition application
using VoiceXML

 148

 In the next sections is presented the simplified personal information
manager application. The core use cases are elaborated and diagrammed in
Universal Markup Language (UML).

Use Cases Analysis

 A full personal information manager can be used in many ways, and
full case analysis involve many use cases. In a sample application I will leave
room for future growth. It can be implemented a variety of functions. In this
application I will focus on three representative use cases for the simplified
personal information manager application. These cases are representative and
underlying technology involved and how it is used.
 The use cases are as follows:
 -editing information about a contact (for example: name, address,
phone number, email)
 -handling a scheduled appointment that you're late for
 -reviewing your list of things to do today
 Next sections elaborate on these cases.

Top-Level Use Case

 The top-level use case diagram in Figure 1 shows the intentionally
limited scope of the simplified personal information manager application. In a
real simplified personal information manager application there would be many
more use cases at this level, for example, “call a contact”, “schedule an
appointment”, “add an address to an existing contact” and so on.
 During use case analysis, SPIM User's access mode (eye or ear) is not
assumed or implied unless the access mode is intrinsic to the requirements of
the use case. For example, the use case in the next section (titled “Edit Contact
Information Use Case”) should be the same regardless of access mode, because
it is an essential function of the system. On the other hand, a hypothetical “Dial
Roadside Assistance from My BrokenDown Car” use case could, dubitable,
presume that the user is accessing the system through a VUI or WUI, but not a
GUI.
 The next sections train another level in this scenario. Every case starts
with the Authenticate use case. This shared case models the process of
identifying the user to the system. Conventionally, authentication is performed
by an username/password-based login, but it may use another mechanism for
voice.

Marieta Gâta - Speech recognition application
using VoiceXML

 149

Figure 1

Edit Contact Information Use Case

 We assume the next situation. If you received a change of address
notice in the mail from a friend, you are not going to call the friend right now
or schedule a meeting with him or her, but you want to record the address
change. First, you look up the existing contact information for your friend, and
then you selectively modify it. To look up it, you can either browse your
address book (if it's small) or search your address book by name. Once you
have the information at hand, you can either review it in summary form (the
types of address you have on a file) or in detailed form (a full listing of address
contents). Then you update the fields that have changed. Figure 2 shows this
use case.

Figure 2

Marieta Gâta - Speech recognition application
using VoiceXML

 150

Running Late Use Case

 Here we assume an ordinary experience. Your schedule is agglomerated
and you've just escaped from a meeting that runs over. You don't have time to
reschedule things, so you want to notify your next appointment that you'll
arrive late. You access your SPIM, get the relevant contact information for your
next appointment, and communicate the fact that you'll be late, by the best
means possible: email, phone call, wireless text message, or voice mail. Figure
3 illustrate this case.

Figure 3

Review Schedule List Use Case

 To refresh your memory on what you have scheduled for the upcoming
week, you want to review your appointments on a day-by-day basis. In your
SPIM, you identify the day you're interested in and then review that day's
planned activities. As you progress through your list of appointments, you want
to scan quickly, ignore things you already recall, and selectively focus on
particular items of interest. This use case is illustrates in Figure 4.

Marieta Gâta - Speech recognition application
using VoiceXML

 151

Figure 4

Object Models

 The main points in this SPIM are follows:
 -a contact is an entity that you communicate with. To initiate
communication with a contact, you can use an address that is appropriate for
you chosen communication method (a phone number for a phone call, an email
address for email, and so on).
 -an appointment is a scheduled event that involves you and one or more
contacts with which you will interact. The venue specifies how the interaction
will occur (physical meeting, teleconference, and so on).
 -a schedule is a list of appointments that fall in a given time span (this
afternoon, today, tomorrow, and so on).
 Figure 5 captures the relationships between these objects.

Marieta Gâta - Speech recognition application
using VoiceXML

 152

Figure 5

Anatomy of the Application

 The database is named spim.mdb and this database has four tables:
Appointment, Contact, LocaleLabels and MediaLabels. The table Contact has
Id, FirstName, LastName, HomePhone, FAXPhone, BusinessPhone,
CellPhone, EmailPrimary, EmailSecondary, HomeAddress1, HomeAddress2,
HomeCity, HomeState, HomeCountry, HomePostalCode, BusinessAddress1,
BusinessAddress2, BusinessCity, BusinessState, BusinessCountry,
BusinessPostalCode, Nickname, s_ColLineage, s_Generation, s_GUID,
s_Lineage, Appointment. MediaLabels has Id, MediaType, s_ColLineage,
s_Generation, s_GUID, S_Lineage, Appointment. LocaleLabels has Id,
LocaleLable s_ColLineage, s_Generation, s_GUID, S_Lineage, Appointment.
Appointment has Contact, Id, Owner, StartTime, EndTime, Medium, Locale,
Description, Gen_Description, s_ColLineage, s_Generation, s_GUID,
s_Lineage. Each table has a generated primary key (Id) that uniquely identifies
the entity. The Appointment table uses a Contact ID as a foreign key to the

Marieta Gâta - Speech recognition application
using VoiceXML

 153

Contact table. This models whom the appointment is with. Auxiliary tables
map integer-coded values for meeting locales and media to text string.
 Root element for the application contains subelements ownerId,
Appointment and Contact. Each of these contains various attributes and
subelements that capture all the information needed to generate HTML or
VXML. Appointment contains ScheduledTime, AttendeeContact,
AttendeeName (which means PersonalNameType), locale (which means
AddressType), Medium, Description. Contact is compound from name,
HomeAddress, BusinessAddress, HomePhone, FAXPhone, BusinessPhone,
MobilePhone, E-mailAddress. Each person has a PersonalNameType with
Nickname, FirstName and LastName. An AddressType consist of an optional
one or two AddressLine followed by a City, State, Country and PostalCode
(any or all can be omitted). Most elements are optional to allow for partial
information being stored in the database. Furthermore, an integrity constraint
(for example, there must be a city) probably should be enforced in the
database, not the middle tier.
 To associate Appointments and Contacts, XML ids are used. An id is an
intradocument link that can be used to uniquely identify an XML element
within a single document.
 When data is retrieved through a database query, the data is mapped
into a single XML format. The XML format consists of a header (which
identifies the SPIM user) and one or more Appointment elements followed by
one or more Contact elements. Depending on the context for the query, the
application determines how to interpret the relationships between
Appointments and Contacts. For example, if the user is reviewing his or her
calendar, there may be multiple appointments and multiple contacts
(corresponding to the appointments within a given time period). For the
Running Late function in the application, there will be at most one
Appointment (scheduled for the current time) and one corresponding Contact.
 The main menu of the application has three choices: Calendar, Address
Book, To-Do List and one link Running Late like in Figure 6.

Marieta Gâta - Speech recognition application
using VoiceXML

 154

Figure 6

 When the VoiceXML interpreter executes the document, it starts
executing the first form or menu in the document.
 A <menu> consist of a spoken prompt and a set of choices. When the
<menu> is executed, the prompt is read and then the system listens for the user
to say one of the choices. The choices are specified in the body of the <choice>
tag. When a choices is recognized, the system starts executing the form or
menu identified by the value of the next attribute, which is interpreted as an
URI.
 A menu or form field specifies a prompt/response exchange between
the caller and the computer. A link is a transition that the caller can activate at
any time the computer is listening for a response. Whereas a menu choice
generally corresponds to only one spoken phrase, a link specifies a grammar.
The grammar may be as simple as a single word or phrase, or it may be more
complex.
 In a VoiceXML browser the Running Late Link will lead you to a
dialog that starts with a prompt like this: C (Computer): You have a scheduled
appointment with Mary Abay at 14:00. Do you want to call home, call
business, fax a message, or send an email notice?

Marieta Gâta - Speech recognition application
using VoiceXML

 155

Future Refinements
 In future it could be done some refinements like the following example:
 -Appointments are currently modeled with just two people: the owner
and the contact. In reality, there would be one owner and a set of contacts.
 -Appointments might be with people who are not registered contacts.
That is, people who don't have an entry in the Contact table.

The Purpose of the Application
 The purpose of the application is to demonstrate the feasibility of the
architecture and provide a model for developing a “real” implementation. You
can use this application and the information as a concrete pedagogical example,
or you can actually install the components and make it work on your own
computer.
 This application brings together representative technologies necessary
to create a small-scale, multititer, working Web application. For the
implementation I used: XML Spy, A Web browser, a VoiceXML browser, a
Web server and a servlet container, an ODBC data source. XML Spy is the
XML IDE used to develop and bench-test XML, XSL, and schemes. The Web
browser is Microsoft Internet Explorer. The VoiceXML browser is the IBM
WebSphere Voice Server SDK. JRun plays the part of Web server and servlet
container. Microsoft Access, acting as a nonproprietary ODBC/JDBC data
source, plays the role of database. Apache Cocoon provides the framework for
generating and transformation XML in the Web server.

References:

 1. Abbott, K.R. (2002). Voice Enabling Web Applications: VoiceXML
and Beyond, Apress, Berkely, USA.
 2. Phillips, L.A. (2000). Special Edition Using XML, QUE
Corporation, USA.
 3. Becchetti, C. ad Ricotti, L.P. (1999) Speech Recognition Theory and
C++ Implementation, John Wiley & Sons, West Sussex, England
 4. Rabiner, R L. and Juang, B.H. (1993) Fundamentals of Speech
Recognition, Prentice Hall, New Jersey, USA

Author:
Marieta Gâta - North University of Baia Mare, Romania, Email address:
marietag@ubm.ro

