ACTA UNIVERSITATIS APULENSIS No 9/2005

AN EXISTENCE RESULT FOR A CLASS OF NONCONVEX
FUNCTIONAL DIFFERENTIAL INCLUSIONS

VASILE LUPULESCU

ABSTRACT. Let o be a positive number and C, := C([—0,0], R™) the
Banach space of continuous functions from [—o,0] into R™ and let T'(¢) be
the operator from C([—o,T], R™) into C,, defined by (T'(t)z)(s) := z(t + s),
s € [—0,0]. We prove the existence of solutions for functional differential
inclusion(differential inclusions with memory) 2’ € F(T(t)x) + f(t,T(t)z)
where I’ is upper semicontinuous, compact valued multifunction such that
F(T(t)x) c 0V ((x(t)) on [0,T], V is a proper convex and lower semicontinu-
ous function and f is a Carathéodory single valued function.

1.INTRODUCTION

Let R™ be the m-dimensional euclidean space with norm ||.|| and scalar
product (.,.). If I is a segment in R then we denote by C(I, R™) the Ba-
nach space of continuous functions from [ into R™ with the norm given
by ||z()|lec = sup{||z(t)||;t € I}. If o is a positive number then we put
C, :=C(]—0,0], R™) and for any t € [0,T], T > 0, we define the operator T'(t)
from C([—o,T], R™) into C, as follows: (T'(t)x)(s) :== z(t + s), s € [~0,0].

Let €2 be a nonempty subset of C,. For a given multifunction F : Q —
and a given function f : Rx{) — R™ we consider the following functional
differential inclusion (differential inclusion with memory):

2R7YL

e F(T(t)x) + f(t, T(t)z). (1)

The existence of solutions for functional differential inclusion (1) was proved
by Haddad [7] in the case in which F'is upper semicontinuous and with convex
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compact values and f = 0. In paper [1], Ancona and Colombo have obtained
an existence result for Cauchy problem x' € F(z)+ f(t,z),2(0) = &£, where
F : R™ — 28" is an upper semicontinuous, cyclically monotone multifunction,
whose compact values are contained in the subdifferential OV of a proper
convex and lower semicontinuous function V' and f is a Carathéodory single
valued function.

In this paper we prove the existence of solutions for functional differential
inclusion (1) in the case in which F' is upper semicontinuous, compact valued
multifunction such that F'(¢) C 9V (¢(0)) for every ¢ € Q and V is a proper
convex and lower semicontinuous function.

2.PRELIMINARIES AND STATEMENT OF THE MAIN RESULT

For x € R™ and r > 0 let B(z,r) := {y € R™; ||y — z|| < r} be the open
ball centered in x with radius r, and let B(x,7) be its closure. For ¢ € C, let
Blp,r) == {¢ € R™[[¢ — ¢l| <} and B(p,r) = {¢ € R™ [y — ¢l| <7}
For x € R™ and for a closed subset A C R™ we denote by d(z, A) the distance
from x to A given by d(z, A) := inf{||ly — z||;y € A}.

Let V : R™ — R be a proper convex and lower semicontinuous function.
The multifunction OV : R™ — 28" defined by

OV(z) ={¢e R"V(y) = V(z) = {{y —x),(V)y € R™}, (2)

is called subdifferential (in the sense of convex analysis) of the function V.
We say that a multifunction F : Q — 28" is upper semicontinuous if
for every ¢ € Q and € > 0 there exists 6 > 0 such that F(¢) C F(¢) +
B(0,2), (V)0 € Blg, o).
We consider the functional differential inclusion (1) under the following
assumptions:

(hy) 2 C C, is an open set and F :  — 2" is upper semicontinuous with
compact values;
(hg) There exists a a proper convex and lower semicontinuous function

V : R™ — R such that

F() € 9V (4(0)) (3)
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for every ¢ € (Q;

(hg) f : RxQ — R™ is Carathéodory function, i.e. for every ¥ € (,
t — f(t,v) is measurable, for a.e. t € R, ¥ — f(t,4) is continuous and there
exists m € L?(R) such that || f(t,9)| < m(t) for a.e.t € R and all ¢ € Q.

We recall that (see [7]) a continuous function z(.) : [—o,T] — R™ is said
to be a solution of (1) if z(.) is absolutely continuous on [0, T], T'(t)z € § for
all t € [0,T] and 2'(t) € F(T(t)x) + f(t,T(t)x) for almost all ¢ € [0,T].

Our main result is the following:

THEOREM 2.1. If F: Q — 28" f: RxQ — R™ and V : R™ — R satisfy
assumptions (hy), (he) and (h) then for every ¢ € Q there exists T > 0 and
z(.) : [-0,T] = R™ a solution of the functional differential inclusion (1) such
that T(0)x = ¢ on [—a,0].

3.PROOF OF MAIN THEOREM

Let ¢ € € be arbitrarily fixed. Since the multifunction x — 9V (z) is
locally bounded (see [3], Proposition 2.9) there exists » > 0 and M > 0 such
that V' is Lipschitz continuous with constant M on B(y(0),r). Since € is an
open set we can choose r such that B(p,7) C Q. Moreover, by Proposition
1.1.3 in [2], F is also locally bounded; therefore, we can assume that

lyll < M, (4)
Yy € F (¢)andy) € B(p,r).

Since ¢ is continuous on [—o, 0] we can choose 7" > 0 small enough such
that for a fixed r € (0,7/2) we have

le(t) = (s)ll <1 ()

for all ¢, s € [—0,0] with |t — s| <T".
By (h3) there exists 7" > 0 such that

/OTH (m(t) + M)dt + 1 <. (6)

Let 0 < T < min{o, T, T",r;/M}. We shall prove the existence of a so-
lution of (1) defined on the interval [—o,T]. For this, we define a family of
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approximate solutions and prove that a subsequence converges to a solution of

(1).

First, we put
zn(t) = p(t),t € [~0,0]. (7)
Further on, for n > 1 we partition [0, 7] by points #/ := %, j=0,1,..,n,
and, for every t € [tJ, t37!], we define

. . . t .

Talt) =)+ (= )+ [, Fls, TE)an)ds, (8)

th

where ¥ = z,,(0) := ¢(0) and
) ) T .

zinrl = xiz + 7?/7]17 (9)

n
v, € F(T(t,)x,) (10)

for every 7 € {0,1,...,n — 1}.
It is easy to see that for every j € {0,1,...,n} we have

T .

—Yn YY), (11)
If for t € [0,7] and n > 1 we define 0,,(t) =t for all ¢t € [tJ,#/7!] then, by

(9) and (10), we have

2a(0) = 20,0+ ¢ = 0D+ [ Fu(s)s (12)
for every t € [0, 7], where f,(t) := f(t,T(0,(t))), yn € F(T(0,(t))x,), and

2, (t) € F(T(0n(1))2n) + fu(t) (13)

a.e. on [0,7T.

Moreover, since |6, (t)—t| < L for every ¢ € [0,T], then 6,,(¢) — t uniformly
on|0, 7T7.

By (11) we infer ||z, — (0)|| < LM < ry, proving that z,(#) = 27 €
B((0),71) for every j € {0,1,...,n} and n > 1 and hence that

2 (0n(t)) € B((0),71) (14)
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for every t € [0, T]and for every n > 1.
Now, by (hs), (4), (6), (12), (14) and our choose of T" we have

[|2n(t) —@O)]] < ||zn(t) = 20 (00 ()[] + |[20(0n(t)) — ©(0)]]
< TM+/0 £ ()lds + 1

_ /OT(m(s)+M)+r1 <r

and so x,(t) € B(¢(0),r), for every t € [0,T] and for every n > 1.

Moreover, by (4) and (13) we have ||« (¢)|| < M +m(t) for every t € [0,T]
and for every n > 1, hence [fJ ||/, (t)||2dt < [} (M + m(t))?dt and therefore
the sequence (), is bounded in L*([0,T], R™).

For all t,s € [0,T], we have ||z,(t) — z,(s)|| < |/ Hx;(T)HdT‘ < | JT(M +
m(7))dr| so that the sequence (z,), is equiuniformly continuous.

Therefore, (2/,), is bounded in L*([0,T], R™) and (z,), is bounded in
C([0,T], R™) and equiuniformly continuous on [0, 7], hence, by Theorem 0.3.4
in [2], there exists a subsequence, still denoted by (x,,),, and an absolute con-
tinuous function z : [0, 7] — R™ such that:

(i) (xn)n converges uniformly on [0, 7] to x;

(i1) (), converges weakly in L*([0,T], R™) to z'.

Moreover, since by (7) all functions z,, agree with ¢ on [—o,0], we can
obviously say that x,, — x on [—o, T, if we extend x in such a way that x = ¢
on [—o,0]. By the uniform convergence of x, to z on [0,7] and the uniform
convergence of 6, to t on [0,T] we deduce that z,,(0,(¢)) — z(t) uniformly on
[0,T7]. Also, it is clearly that T'(0)z = ¢ on [—0,0].

Further on, let us denote the modulus continuity of a function 1 defined on
interval I of R by w(,1,¢) :=sup{||v(t) —(s)|];s,t € I,|s—t| <e},e > 0.

Then we have (see [6]):

(T (0n(t))xn = T(t)2n] |

—0 < s < Osup||z,(0n(t) + 5) — x,(t + 9)||
T

< w(xn’ [_O-’ T]v 5)
< wli 0,0 1)+ (e 0,71, 3)
< w(@u [_070]7Z)+:M’
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hence
T (t))xn — T(O)znllo < 00 (15)
for every n > 1, where 8, := w(y, [~0,0], %) + M.

Thus, by continuity of ¢, we have §,, — 0 as n — oo and hence
|T(0n(t))xn — T(t)xy||, — 0 as n — oo and since the uniform convergence of
x, to x on [—o, T] implies

Tz, — T(t)x (16)

uniformly on [—o, 0],we deduce that

TO,(t)x, — T(t)z (17)

in C,.

Now, we have to estimate ||(T'(0,.(t))z,)(s) — ¢(s)|| for each s € [—0,0]. If
—0,(t) < s <0, then 6,(t) + s > 0 and there exists j € {0,1,...,n — 1} such
that 0,,(t) + s € [t], 1]

Thus, by (5), (14) and by the fact that |0, (t) —t| < T and [s| < T, we
have

([(T(05(8) ) (5) — ()| = |[2n(0n(t) + 5) — p(s)]]
< [2n(0n(t) + 5) = @(0)]] + [[(s) — ¢(0)]|
<ri+r<r
If — < s < —0,(t) then s+ 0,(t) < 0 and by (5) we have
[(T(0n(t)xn)(s) — p(s)]| = [[2n(n(t) + 5) —(s)]| <71 <.
Therefore, T(6,(t))z, € Blg,r), for every ¢ € [0,T] and for every n > 1

and so that, by (16), T(t)x € B(p,r) C Q on [—a,0].
Further on, by (13) and (15) we have

A((T(t)zn, 2, (t) = fu(t)), graph(F)) < 6, (18)

for every n > 0.
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By (h3) and (16) we have f,(.) := f(.,T(.)x,) — f(.,T(.)z) in L*([0, T], R™)
and hence by (ii), (18) and Theorem 1.4.1 in [2] we obtain that
2'(t) € co(T(t)x) + f(t,T(t)x) (19)

a.e. on [0, 7],
where co stands for the closed convex hull.
By (hy) we have that

2(t) — f(t, T(t)x) € OV (x(t)) (20)

a.e. on [0,7.
Since the functions ¢ — z(t) and ¢ — 9V (z(t)) are absolutely continuous,
we obtain from Lemma 3.3 in [4] and (19) that

AV (@ (0) = @0, () ~ [0, T0)2)
a.e. on [0,7];
therefore,
V() V) = [ @R - [0, 5T )
On the other hand, since

X, (t) = fu(t) € F(T(t],)x,) C OV (xn(t,))Vt € [t], )],
it follows that

V(za(t1) = V(za(t)) = (an(t) = fult), 2a(67) — 2a(t])) =

@) = fult). [, @) = [7 @I = [ (fale), @)

n n n

By adding the n inequalities from above, we obtain

V(D) = V((0) 2 [ Nl — [ o)t (22)

Thus, the convergence of (f,), in L*norm and of and ('), in the weak
topology of L? implies that
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limy, o0 f()T<fn(t)7 ZL‘/n(t)>dt = f()T<f(t)7 ZL’/(t)>dt.

By passing to the limit for n — oo in (22) and using the continuity of V,
a comparison with (21), we obtain

||II||%2 Z 1imsupn—>oo ||$;1||%2

Since, by the weak lower semicontinuity of the norm, |||2/[|3. < liminf,, . ||z} |32,
we have that |[2/|[2, = lim,, .o ||2}, ][22 i.e. (z),), converges strongly in L?([0, T|, R™)(see
[5], Proposition II1.30). Hence there exists a subsequence (again denote by)

(«!), which converges pointwiesely a.e. to .

Since by (h;) the graph of F'is closed and, by (18), lim,, o d((T'(t)xn, 2}, (t)—
fu(t)), graph(F)) = 0, we obtain that 2'(t) € F(T(t)x)+ f(t,T(t)zx)a.e.on]0, T
and so functional differential inclusion (1) does have solutions.
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