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Abstract.The linear algebra offers an important support of calculus for
a lot of various mathematical problems. The usual methods of decomposition
of a matrix can be used in the solution of different practical problems which
can be mathematical modeled. The solutions of the first two mathematical
models presented here and named ”the model of a forest” and ”the air model”
are based on all above mentioned linear algebra techniques.

The third model named ”the model of the two tanks” is inspired from the
chemical problems of substances change between two tanks of chemical sub-
stances. In this paper will be presented two mathematical models of solution
according to the discrete and the continuous case, respectively, and based on
the matrix calculus and ordinary differential equations.

The model no. 4 is named ”the model of the decomposition of a radioactive
material” and is inspired from practical archaeological problems. The one of
the most used method in the researches of archaeology and history is based on
the decomposition of the 14C. This paper present two mathematical models
used in solving the above mentioned problems based on the theory of the
discrete and continuous dynamical systems. The models will be, evidently,
available in the study of every decomposition of chemicals substances. The
first part of this paper is dedicated to a set of preliminary and necessary
elements of linear algebra.

Definition 1.We say that λ ∈ R is an eigenvalue of the d × d matrix A
if det(A − λI) = 0. The set of all eigenvalues of a square matrix A is called
the spectrum and denoted by σ(A).

Each d× d matrix has exactly d values. All the eigenvalues of a symmetric
matrix are real, all the eigenvalues of a skew-symmetric are pure imaginary
and, in general, the eigenvalues of a real matrix are either real or form complex
conjugate pairs.
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Definition 2.We say that an eigenvalue is of algebraic multiplicity r ≥ 1
if it is a zero of the characteristic polynomial p(z) = det(A − zI),in other
words, if

p(λ) =
dp(λ)

dz
= . . . =

dr−1p(λ)

dzr−1
= 0,

drp(λ)

dzr
= 0.

An eigenvalue of algebraic multiplicity one is said to be distinct.

Definition 3.If λ ∈ σ(A) it follows that dim ker(A − λI) ≥ 1,therefore
there are nonzero vectors in the eigenspace ker(A − λI).Each such vector is
called an eigenvector of A, corresponding to the eigenvalue λ.An alternative
formulation is that v ∈ Rn \ {0} is an eigenvector of A, corresponding to
λ ∈ σ(A), if Av = λv.

The geometric multiplicity of λ is the dimension of its eigenspace and it is
always true that

1 ≤ geometric multiplicity ≤ algebraic multiplicity.

Definition 4.If the geometric and algebraic multiplicity are equal of its
eigenvalues, A is said to have a complete set of eigenvectors.

Since different eigenspaces are linearly independent and the sum of alge-
braic multiplicities is always d, a matrix possessing a complete set of eigen-
vectors provides a basis of Rd formed from its eigenvectors specifically, the
assembly of all bases of its eigenspaces.

Lemma 1.If a d × d matrix A has a complete set of eigenvectors then it
possesses the spectral factorization

A = V DV −1. (1)

Here D is a diagonal matrix and dl,l = λl, σ(A) = {λ1, λ2, . . . , λd}, the lth

column of the d× d matrix V is an eigenvector in the eigenspace of λl and the
columns of V are selected so that det V �= 0, or, in other words, so that the
columns form a basis of Rd.

It is easy to verify that for a matrix A having a spectral factorization

A = V DV −1

we shall have
An = V DnV −1. (2)

354



C. Mitran - On some mathematical models of the discrete ...

1.The model of a forest

A forest contain a set of trees of different sizes: littles, averages and bigs.
From statistical dates it can be considered that about 7

18
of the little trees

become average trees and about 2
9

of the average trees become big trees. Every
five years about 8

35
of the average trees and 1

10
of the big trees are cut and an

equal number to the total number of the cut trees of little trees are introduced
in the forest.

Taking care of all above mentioned dates we want to create a discrete model
of the evolution in time of the forest.

We denote by x0
1, x

0
2 and x0

3 the initial number of little, average and big
trees and with x1, x2, x3 the variables that describe the evolution in time of
the little, average and big trees in the forest. After five years we shall have

x1 = x0
1 −

7

18
x0

1 +
1

10

(
x0

3 +
2

9
x0

2

)
+

8

35

(
x0

2 +
7

18
x0

1 −
2

9
x0

2

)

x2 = x0
2 +

7

18
x0

1 −
2

9
x0

2 −
8

35

(
x0

2 +
7

18
x0

1 −
2

9
x0

2

)

x3 = x0
3 +

2

9
x0

2 −
1

10

(
x0

3 +
2

9
x0

2

)

or, making the calculus

x1 = 0.7x0
1 + 0.2x0

2 + 0.1x0
3

x2 = 0.3x0
1 + 0.6x0

2

x3 = 0.2x0
2 + 0.9x0

3

or, using a matrix representation
 x1

x2

x3


 =


 0.7 0.2 0.1

0.3 0.6 0
0 0.2 0.9




 x0

1

x0
2

x0
3


 .

For the matrix A =




0.7 0.2 0.1
0.3 0.6 0
0 0.2 0.9


 the eigenvalues can be found solving

the equation det(A − λI3) = 0 or

−λ3 + 2.2λ2 − 1.53λ + 0.32 = 0 ⇔ 100λ3 − 220λ2 + 153λ − 33 = 0

355



C. Mitran - On some mathematical models of the discrete ...

with the eigenvalues λ1 = 1, λ2 = 6+
√

3
10

, λ3 = 6−√
3

10
and the corresponding

eigenvectors

v1 =
(

35

4
,−7

2
, 1
)

, v2 =

(√
3 − 1

2
,
3 −√

3

2
, 1

)
,

v3 =

(√
3 + 1

2
,
−3 −√

3

2
, 1

)
.

Taking care of (1) we get the next decomposition for the matrix A:

A=




35
4

√
3−1
2

√
3+1
2

−7
2

3−√
3

2
−3−√

3
2

1 1 1






1 0 0

0 6−√
3

10
0

0 0 6+
√

3
10






35
4

√
3−1
2

√
3+1
2

−7
2

3−√
3

2
−3−√

3
2

1 1 1




−1

(3)

that means we have

P =




35
4

√
3−1
2

√
3+1
2

−7
2

3−√
3

2
−3−√

3
2

1 1 1


 , D =




1 0 0

0 6−√
3

10
0

0 0 6+
√

3
10


 . (4)

The evolution of the system will be, taking care of (2), the next:

An = PDnP−1.

Making the calculus and taking care of (4) we get

An =




35
4

√
3−1
2

√
3+1
2

−7
2

3−√
3

2
−3−√

3
2

1 1 1






1 0 0
0
(

6−√
3

10

)n
0

0 0
(

6+
√

3
10

)n






35
4

√
3−1
2

√
3+1
2

−7
2

3−√
3

2
−3−√

3
2

1 1 1




−1

(5)

The evolution of the system will be, taking care of (5), the next:


 xn

1

xn
2

xn
3


 = An


 x0

1

x0
2

x0
3


 (6)
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It means that after an interval of time of 5n years the number of little,
average and big trees can be find from (6). For example, after 10 years, corre-
sponding to the case n = 2 we shall have:


 x2

1

x2
2

x2
3


=




35
4

√
3−1
2

√
3+1
2

−7
2

3−√
3

2
−3−√

3
2

1 1 1






1 0 0

0
(

6−√
3

10

)n
0

0 0
(

6+
√

3
10

)

×

×




35
4

√
3−1
2

√
3+1
2

−7
2

3−√
3

2
−3−√

3
2

1 1 1




−1


x0
1

x0
2

x0
3




and computing the invert of the matrix P , we get




35
4

√
3−1
2

√
3+1
2

−7
2

3−√
3

2
−3−√

3
2

1 1 1




−1

=
98 + 3

√
3

2401




3 1
2

−
√

3
4

4−√
3

2
34−√

3
4

−63+
√

3
8

−10+
√

3
2

−36+
√

3
4

56−√
3

4


 .

2.The air model

From statistical dates we have that if a day is a sunny day then the next
day will be also a sunny day with a probability of 0.8 and will be a rainy day
with a probability of 0.2. Also we know from statistical dates that if a day
is rainy then the next day will be a rainy day with a probability of 0.7 or a
sunny day with a probability of 0.3. Taking care of all above mentioned we
want to create a mathematical model of the evolution in time of the weather in

time starting from some initial conditions. Let us consider X0 =

(
x0

1

x0
2

)
the

random vector who describes the initial atmospheric conditions and there, the

string X1 =

(
x1

1

x1
2

)
, X2 =

(
x1

2

x2
2

)
, . . ., Xn =

(
x1

n

x2
n

)
of random variables who

describe the evolution after one, two, and so on, after n days of the weather.
After a day we have

{
x1

1 = 0.8x0
1 + 0.3x0

2

x1
2 = 0.2x0

1 + 0.7x0
2

⇔
(

x1
1

x1
2

)
=

(
0.8 0.3
0.2 0.7

)(
x0

1

x0
2

)
.
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After two days we shall have

(
x2

1

x2
2

)
=

(
0.8 0.3
0.2 0.7

)(
x1

1

x1
2

)
=

(
0.8 0.3
0.2 0.7

)2 (
x0

1

x0
2

)

and after n days we shall have

(
xn

1

xn
2

)
=

(
0.8 0.3
0.2 0.7

)(
x0

1

x0
2

)
.

Denoting by A =

(
0.8 0.3
0.2 0.7

)
we get for the matrix A the eigenvalues

λ1 = 1, λ2 = 0.5 and the corresponding vectors v1 =
(

3
2
, 1
)
, v2 = (1,−1).

Taking care of (1) we have the next decomposition for the matrix A:

A =

(
3
2

1
1 −1

)(
1 0
0 0.5

)(
3
2

1
1 −1

)−1

that means P =

(
3
2

1
1 −1

)
and D =

(
1 0
0 0.5

)
.

From (2) we have for the matrix An the next representation:

An =

(
3
2

1
1 −1

)(
1 0
0 0.5

)n ( 3
2

1
1 −1

)−1

or, making the calculus

An =

(
3
2

1
1 −1

)(
1 0
0 (0.5)n

)(
3
2

1
1 −1

)−1

=

(
3
2

1
1 −1

)(
1 0
0 (0.5)n

)(
2
5

2
5

2
5

−3
5

)
(7)

So, the evolution in time of the system after n days and with the initial

value

(
x0

1

x0
2

)
will be given by the next representation:

(
xn

1

xn
2

)
=

(
3
2

1
1 −1

)(
1 0
0 (0.5)n

)(
2
5

2
5

2
5

−3
5

)(
x0

1

x0
2

)
. (8)
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For example, if we have an entire day just a sunny day then, after three
days, using the air model, we shall have taking care of (8) and from the initial

conditions

(
x0

1

x0
2

)
=

(
1
0

)
the next

(
x3

1

x3
2

)
=

(
0.65
0.35

)
that means we shall

have a sunny day with a probability of 0.65 and a rainy day with a probability
of 0.35.

3.The model of the two tanks

Two tank contain water with salt (NaCl) and the concentrations of salt
are about of 0.001g/l in the first tank and 0.01g/l in the second tank. Every
minute from the first tank pass to the second tank a quantity of 1l and from
the second tank to the first tank a quantity of 2l as it can be seen in Figure 1.

� �

�

�

� ����� � �����

� �����

� �����
��� �	�
 ��� �	�


Figure 1:

Also, every minute a quantity of 2l of clear water come into the first tank
and a quantity of 1l/min go out from the second tank.

Taking care of all these mentioned we want to express the evolution in time
of the system that exactly means we want to know the evolution in time of
the concentration of salt in the two tanks. We shall treat two cases: a discrete
and a continuous one.

The discrete case
Let us consider:
V k

1 - the volume in the first tank after k minutes
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Nk
1 - the quantity of NaCl in the first tank after k minutes

V k
2 - the volume in the second tank after k minutes

Nk
2 - the quantity of NaCl in the second tank after k minutes

having, evidently, the initial values:
V 0

1 = V 0
2 = 100 liters.

It is easy to see that the evolution of the volumes of the two tanks are given
by:

V k+1
1 = V k

1 + 3
V k+1

2 = V k
2 − 2

(9)

Also, taking care of the initial considerations, we get for Nk
1 and Nk

2 the
next

Nk+1
1 = Nk

1 +

(
−Nk

1

V k
1

+ 2
Nk

2

V k
2

)

Nk+1
2 = Nk

2 +

(
Nk

1

V k
1

− 3
Nk

2

V k
2

)

or

Nk+1
1 = Nk

1

(
1 − 1

V k
1

)
+ 2

Nk
2

V k
2

Nk+1
2 = Nk

2

(
1 − 3

V k
2

)
+

Nk
1

V k
1

(10)

We have to study the evolution of the concentrations of NaCl in the two
tanks. For this, denoting by

pk
1 =

Nk
1

V k
1

, pk
2 =

Nk
2

V k
2

we have, if we take care of (2), that

pk+1
1 =

Nk+1
1

V k+1
1

= pk
1

V k
1 −1

V k+1
1

+ 2pk
2

1

V k+1
2

pk+1
2 =

Nk+1
2

V k+1
2

= pk
1

1

V k+1
2

+ pk
2

V k
2 −3

V k+1
2

(11)

From (1) we can deduce that

V k+1
1 = 100 + 3(k + 1)

V k+1
2 = 100 − 2(k + 1)

(12)
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and replacing (9) and (12) in (11) we get

pk+1
1 =

99 + 3k

103 + 3k
pk

1 +
2

103 + 3k
pk

2

pk+1
2 =

1

98 − 2k
pk

1 +
97

98 − 2k
pk

2

or (
pk+1

1

pk+1
2

)
=

(
99

103+3k
2

103+3k
1

98−2k
97

98−2k

)(
pk

1

pk
2

)
(13)

The continuous case
The evolution of the volumes in the tanks are given by:

dV1

dt
= +3(l/min)

dV2

dt
= −2(l/min)

and from here, taking care of the initial values in the tanks about 100 liters
we get

V1(t) = 3t + 100
V2(t) = −2t + 100

(in liters) (14)

The evolution of the NaCl quantities in the tanks:

dN1

dt
= −N1

V1
+ 2N2

V2

dN2

dt
= N1

V1
− 3N2

V2

(15)

The evolution of the concentrations of NaCl if we denote by p1 = N1/V1,
p2 = N2/V2 will be given by

p′1 = dp1

dt
= d(N1/V1)

dt
=

N ′
1

V1
− N1

V 2
1
V ′

1

p′2 = dp2

dt
= d(N2/V2)

dt
=

N ′
2

V2
− N2

V 2
2
V ′

2

(16)

Replacing (14) and (15) in (16) we get

p′1 = 1
V1

(−4p1 + 2p2) = 1
3t+100

(−4p1 + 2p2)

p′2 = 1
V2

(p1 − p2) = 1
−2t+100

(p1 − p2)
(17)
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which is a system of differential equations having the initial conditions:

p1(0) = 0.001(1gr/l)

p2(0) = 0.01(10gr/l).

4. The model of the decomposition of a radioactive substance

It is well-known the fact that the time in which the 14C gets in halves in
every substance which contains it is about 5800 years. In other words denoting
by S = 5800 years, after a period of S years the quantity of 14C will be in
halves, after a period of 2S years the quantity of 14C will be in a measure of
quarter and so on.

Supposing that we have initially a quantity of x0 of 14C after a period of
S years we shall have a quantity

x1 =
1

2
x0, (18)

after a period of 2S years we shall have a quantity

x2 =
(

1

2

)2

x0,

after periods of S years we shall have a quantity

xR =
(

1

2

)R

x0.

Definition 5.The system made by the string X0, X1, . . . , XR, . . . will be
named as a discrete dynamical system.

Like an example, let us consider that in an archaeological relic, the quantity
of 14C is found from measures about of 15% from the initial value. Taking care
of these we want to find how old is the relic. From (20) we get

xR =
(

1

2

)R

x0 = 0.15x0 ⇒
(

1

2

)R

= 0.15 ⇒ R ln
1

2
= ln 0.15 ⇒

R =
ln 0.15

ln 0.5
≈ 2.74(periods of Syears).
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The number of years of the relic is in this case n ≈ 2.74 ·S ≈ 15800 (years).

The continuous case

Let us consider that the quantity x of an radioactive material is a function
of t, in other words x = x(t). The rule of the decomposition will be given by:

−dx

dt
= kx ⇒ dx

dt
= −kx ⇒ dx

x
= −kt (21)

By integrating (4) we get

∫
dx

x
=
∫

−kdt ⇒ ln x = −kt + C

or
x(t) = e−kt+C = Ce−kt

Denoting by t1/2 the time in which the quantity of radioactive material get
in halves we get

x(t1/2) =
x0

2
= x0e

−kt1/2 ⇒ 1

2
= e−kt1/2 ⇒

−kt1/2 = ln
1

2
= − ln 2 ⇒ k =

ln 2

t1/2

. (23)

So

x(t) = x0e
− ln 2

t1/2
t

(24)

or
x(t) = x0e

ln 2
−t/t1/2

= x02
−t/t1/2 =

x0

2t/t1/2

For t = nt1/2 and denoting by S = t1/2 we get

x(nS) =
x0

2n

which is the same result with the result given by (20).
For example, about a radioactive material we know that after 300 years

he had get at 10% of the initial value. We want to know t1/2 and, also, the
quantity of radioactive material who will remain after 400 years from the initial
value.
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We have:
x(300) = 0.1x0

x(300)
(7)
= x

− ln 2
t1/2

·300
0

(25)

From (25) we deduce that

t1/2 = − ln 2

ln 0.1
· 300 ⇒ t1/2 ≈ 90(years).

For t = 400 we get

x(400)
(7)
= e

− ln 2
t1/2

·400 ≈ e−
ln 2
90

·400 ≈ 0.046.

So, after 400 years, the quantity of radioactive material will be about 4.6%
from the initial value.
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