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Abstract. In today’s world, governmental, public, and private institutions
systematically release data which describes individual entities (commonly re-
ferred as microdata). Those institutions are increasingly concerned with pos-
sible misuses of the data that might lead to disclosure of confidential informa-
tion. Moreover, confidentiality regulation requires that privacy of individuals
represented in the released data must be protected. To protect the identity
of individual entities from the microdata a large number of disclosure control
methods have been proposed in the literature (such as sampling, simulation,
data swapping, microaggregation, etc.). To compare different approaches to
achieve data protection, various disclosure risk measures have been proposed
in the literature. We introduced in our earlier papers a customized global
disclosure risk measure that varied between a minimal and maximal value.
In the mean time, Samarati and Sweeney have introduced a property, called
k-anonymity, which must be satisfied by a microdata to guarantee the pro-
tection of individual entities [Samarati 2001, Sweeney 2002a]. In this paper
we describe our disclosure risk measures, the k-anonymity property, and then
we compare their advantages and disadvantages. The global disclosure risk
measures offer more information about the level of protection and they can be
customized based on the specific privacy requirements for a given microdata.
On the other end, k-anonymity property can be obtained automatically with
efficient algorithms, while the usage of the global disclosure risk measures still
involves human intervention.

149



T. M. Truta, F. Fotouhi, D. Barth-Jones - Global disclosure risk ...

1. INTRODUCTION

Governmental, public, and private institutions that systematically release
data are increasingly concerned with possible misuses of their data that might
lead to disclosure of confidential information [Trottini 2003]. Moreover, con-
fidentiality regulation requires that privacy of individuals represented in the
released data must be protected. Some regulations that enforce the privacy
of individuals are: the US Health Insurance Portability and Accountability Act
(HIPAA) [HIPAA 2002], the Canadian Standard Association’s Model Code for
the Protection of Personal Information [Rotenberg 2000] and the Australian
Privacy Amendment Act 2000 [APA 2000].

Disclosure Control is the discipline concerned with the modification of data,
containing confidential information about individual entities such as persons,
households, businesses, etc. in order to prevent third parties working with
these data from recognizing individuals in the data, and, thereby, disclosing
information about these individuals [Bethlehem 1990, Tendick 1994].

There are two types of disclosures, namely, identity disclosure and attribute
disclosure. Identity disclosure refers to identification of an entity (person, insti-
tution) and attribute disclosure occurs when the intruder finds out something
new about the target entity [Lambert 1993]. We notice that identity disclosure
does not imply attribute disclosure. It may happen that the intruder does not
find anything new when he identifies an entity. Also we can have attribute
disclosure without identity disclosure.

We refer to initial data as microdata. Microdata represents a series of
records, each record containing information on an individual unit such as a
person, a firm, an institution, etc [Willemborg et al. 2001]. Microdata can
be represented as a single data matrix where the rows correspond to the units
(individual units) and the columns to the attributes (as name, address, in-
come, sex, etc.). At present, microdata is released for use by the third party
after the data owner has masked the data to limit the possibility of disclo-
sure. Typically, names and other identifying information are removed from
the microdata before being released for research use. We will call the final
microdata masked or released microdata [Dalenius et al. 1982]. We will use
the term initial microdata for microdata where no disclosure control methods
were applied.

The major goal of disclosure control for microdata is to protect the con-
fidentiality of the individuals. Several disclosure control techniques were pro-
posed in the literature (for a good survey see [Willemborg et al. 2001]). To
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increase the level of protection, several methods are usually applied in succes-
sion in the disclosure control process. Some of the most used disclosure control
techniques are: global recoding (also known as generalization) [McGuckin et
al. 1990, Sweeney 2001b], microaggregation [Domingo-Ferrer et al. 2002], sam-
pling [Skinner et al. 1994], suppression [Samarati 2001b, Little 1993], and data
swapping [Dalenius et al. 1982, Reiss 1984].

2. GLOBAL DISCLOSURE RISK MEASURES

Global Disclosure Risk Measures

Disclosure risk is the risk that a given form of disclosure will be encoun-
tered if masked microdata is released [Chen et al. 1998]. Information loss
is the quantity of information in the initial microdata, which does not occur
in masked microdata because of disclosure control methods [Willemborg et
al. 2001]. When protecting the confidentiality of individuals, the data owner
must satisfy the two conflicting requirements: protecting confidentiality for
the entities from the initial microdata and maintaining analytic properties in
the masked microdata [Kim et al. 2001]. The ultimate goal is minimizing
disclosure risk so as to comply with existing regulations, while simultaneously
minimizing information loss for statistical inference [Fellegi 1972]. Since fully
optimal minimization of both measures is not possible (decreasing disclosure
risk will usually lead to increase information loss and vice versa), the data
owner must select a compromise between disclosure risk and information loss
values [Duncan et al. 2001].

As we mentioned earlier, masked microdata is already de-identified, that is
direct identifiers like name, address etc. are removed. However, it is possible
for an intruder to link a record from masked microdata to some additional data
he/she may know and to be able to disclose information about a particular
target. Because each record represents a particular entity, we may consider
defining disclosure risk at the record level. As mentioned before, for a non-
empty masked microdata, disclosure risk is not zero. The goal of any disclosure
control method is to minimize the risk of disclosure. One way to achieve this is
to consider a threshold value for disclosure risk. The risk for masked microdata
should be less or equal of the threshold value. In this case the microdata is
considered safe, and if the disclosure risk is greater then the threshold value
the microdata is considered unsafe.
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Considerable research on disclosure risk assessment [Adam et al. 1989,
Benedetti et al. 1998, Bilen et al. 1992, Denning et al. 1979, Elliot 2000,
Fuller 1993, Greenberg et al. 1992, Lambert 1993, Paass 1988, Skinner et al.
2002, Spruill 1983] has resulted in a variety of proposed disclosure risk models,
but all researchers are unanimous in the conclusion that the risk of disclosure
cannot be eliminated completely. Accordingly, such research has focused on
limiting disclosure risks to threshold levels.

One of the most intuitive ways to measure disclosure risk for microdata
is to count the number of unique records with respect to a limited set of at-
tributes [Steel et al. 2001]. The selected attributes are called keys in disclosure
avoidance literature [Willemborg et al. 2001]. Substantial work has been done
on estimating the number of population uniques from a sample of data when
the population follows a particular distribution such as log-normal [Fienberg
et al. 1998], Poisson-Gamma [Bethlehem et al. 1990], Dirichlet-multinomial
[Takemura 1999], and negative-binomial [Chen et al. 1998]. Greenberg and
Zayatz have proposed a procedure that is not dependent on a parametric sta-
tistical distribution [Greenberg et al. 1992]. Other approach was proposed by
Lambert who defined disclosure risk as matter of perception [Lambert 1993].
Identity disclosure refers to the identification of an entity (such as a person
or an institution) and attribute disclosure refers to an intruder finding out
something new about the target entity [Lambert 1993].

Recent work can be categorized into two directions: individual and global
disclosure risk. Benedetti and Franconi introduced individual risk methodol-
ogy [Benedetti et al. 1998]. The risk is computed for every released entity
from masked microdata. In this scenario, the individual risk for each entity
is the probability of correct identification by an intruder. Other papers ex-
tended this approach [Benedetti et al. 1999, Polettini 2003, Di Consigolio et
al. 2003]. Global disclosure risk is defined in terms of the expected number of
identifications in the released microdata. Elliot and Skinner define disclosure
risk measures as the proportion of correct matches amongst those records in
the population that match a sample unique masked microdata record [Elliot
2000, Skinner et al. 2002]. Other global disclosure risk measures have been
proposed in [Polettini 2003, Dobra et al. 2003].

In the area of disclosure control for microdata we introduced three global
disclosure risk measures. Our disclosure risk measures compute the global
disclosure risk for the released data and are not linked to a target individual
[Polletini 2003]. . We proposed as initial metrics, two extreme measures called
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minimal disclosure risk (DR,,;,) and maximal disclosure risk (DR,,q;), and
we then define a more general measure (Dy) based on a weight matrix.

For simplicity in this paper we will describe in detail our global disclosure
risk for microdata, different disclosure control methods and a general disclosure
risk formulation were presented in other papers [Truta et al. 2003a, Truta et
al. 2003b, Truta et al. 2004a, Truta et al. 2004b].

Microaggregation is a disclosure technique applicable to quantitative at-
tributes. It can be applied to a single attribute (univariate microaggregation)
at a time, or to a group of attributes (multivariate microaggregation). We will
briefly discuss the univariate case.

The idea behind this method is to sort the records from the initial micro-
data with respect to an attribute A, create groups of consecutive values, replace
those values by the group average. How the groups are formed is up to the data
owner. Usually, the owner specifies a minimum size for a group. More formally,
let be X = {x1,x9,...,x,} where z; is the value of attribute A for record i and
let k& be the minimum size of a group. A k-partition P = {C1,C5, ..., Chmp)}
of X is a partition where the size of group C;, 1 < i < m(P) is at least k.
Let Py be the set of all k-partitions of X. Optimal microaggregation consists
of finding a k-partition such that the sum of distances from each x; to the
average value for each partition

B 1
xci:@'zﬁl (1)

x,€C;

is minimized, where C; is the group to which z; belongs. Formally, the problem
1s:

m(P)
MiMypep, E E |z; — Zo,

=1 Tj eC;

(2)

where m(P) is not part of the input [Oganian et al 2001].

To quantify disclosure risk is a very difficult task. Usually, an intruder
uses some external information, and together with the masked microdata he
can match the corresponding records and, subsequently, disclose confidential
individual information. The external information is a very general concept,
and, therefore, we need to make assumptions about this external knowledge in
order to predict the disclosure risk. To simplify our formulation we consider the
initial microdata as a set of records with values from three types of attributes:
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identifier, confidential and key attributes. The attributes are split into three
categories as follow:

e [, 15,..., 1, are identifier attributes such as Name and SSN that can
be used to identify a record. Those attributes are present only in initial
microdata because express information which can lead to a specific entity.

o K1, Ky, ..., K, are key attributes such as Zip Code and Age that may be
known by an intruder. Key attributes are present in masked microdata
as well as in the initial microdata.

o 51,95,...,5, are confidential attributes such as Principal Diagnosis and
Annual Income that are rarely known by an intruder. Confidential at-
tributes are present in masked microdata as well as in the initial micro-
data.

The first assumption we make is that the intruder does not have specific
or confirmed knowledge of any confidential information. The second assump-
tion is that an intruder knows all the key and identifier values from the initial
microdata, usually through access to an external dataset. Since, the owner of
the data often does not have complete knowledge about the external informa-
tion available to an intruder, by using this assumption; the data owner will be
able to determine whether the disclosure risk is under an acceptable disclosure
risk threshold value. This assumption does not reduce the generality of the
problem.

The microaggregation method preserves the same number of records (n) in
the masked microdata as in the initial microdata. We cluster the data from
both microdata sets based on their key values. In the statistical disclosure
control literature, such clusters are typically referred to as equivalence classes
[Zayatz 1991] or cells [Chen et al. 1998]. We define the following notations for
initial microdata:

e F' — the number of clusters;
e Ak — the set of elements from the k-th cluster for all k, 1 < k < F;

o I, = |{Ak||Ak| =i, for all k =1,.., F}| for all i, 1 <1i < n. Fj; represents
the number of clusters with the same size;
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o n; = |{z € Ag||Ax| =i, for all k = 1,..,F}| for alli, 1 <i <mn. n
represents the number of records in clusters of size i.

Similar notations are defined for the masked microdata set:

e f — the number of clusters with the same values for key attributes.
e M, — the set of elements from the k-th cluster for all £, 1 < k < f.

o fi=|{Mg||My| =i, foral k=1,.. f} foralli 1 <i<n. firepresents
the number of clusters with the same size.

o t; = |[{z € My|[Mg| =i, for all k = 1,...,f} forall i, 1 <i < mn. ¢
represents the number of records in clusters of size 1.

To relate initial microdata to masked microdata we define a n x n matrix
called the classification matriz C. Each element of C, ¢;;, represents the num-
ber of records that appears in clusters of size ¢ in the masked microdata and
appeared in clusters of size j in the initial microdata. Mathematically, this
definition can be expressed in the following form: For all : = 1,...,n and for
all j = 1,...,n; ¢;;j = {z € My and z € Ay||M| = ifor all k =1,..., f and
|A,| =g, forallp=1,..., F}.

The following algorithm describes how to calculate elements of the classi-
fication matrix.

Algorithm 1 (Classification matrix construction)
Initialize each element from C with 0.
For each element s from masked microdata MM do
Count the number of occurrences of key values of s in masked microdata MM .
Let 4 be this number.
Count the number of occurrences of key values of s in initial microdata I M.
Let 7 be this number.
Increment c;; by 1.

End for.

The first measure of disclosure risk, called minimal disclosure risk, is based
on the percentage of unique records, which is discussed by Fienberg [Fienberg
et al. 1998]. This measure is defined as:
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C11
DRmin = 3
! 3)

For the second measure, called maximal disclosure risk, the distribution
of the records that are not unique in both initial and masked microdata is
considered. The probability of record linkage is included in this formulation:

m k
- 1 Ckj
DRy = Zk_l %3_1 kj

(4)

For the third measure, we define disclosure risk weight matrix, W, as:

W11 0 0
W = Wo1 W22 ... 0 (5)
Wp1 Wp2 ... Wpp

with the following properties:

® Wi > W, 1j > ... > wyy forall j, 1< 5 <n.

® Wi > W > ... >wy foralle, 1 <i<n.

® Wi > W12 > ... = Wppjir forall j, 1 <5 <n.

D i1 2?:1 Wij =M.

Disclosure risk weight matrix increases the importance of unique values
relative to the rest of records, and likewise, attributes a greater importance for
records with double occurrences relative to records with greater frequencies,
and so on. A detailed explanation of disclosure risk weight matrix can be found
in [Truta et al. 2003b]. The owner of the data defines the weight matrix, and
this matrix captures particularities of that specific initial microdata.

The last formula proposed for disclosure risk, called weighted disclosure
risk, is:

n k
1 1
DRy = E —E Whj * Ckj 6
W n - w1 1 k st kj kj ( )

Please note that when ¢;; = n and all other weights are 0 in disclosure risk
weights matrix, DR,, = DR,;,. Also when all weights are equal with ¢;; in
disclosure risk weights matrix DR,, = D R.x.
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3. k-ANONYMITY PROPERTY

Sweeney and Samarati introduced the property called k-anonymity to char-
acterize the danger of identity disclosure [Samarati 2001, Sweeney 2002a].
In their papers the term quasi-identifier attributes is used instead of key at-
tributes.

The k-anonymity property for a masked microdata (MM) is satisfied if with
respect to key attribute set (KKA) if every count in the frequency set of MM
with respect to KA is greater or equal to k [LeFevre et al. 2005]. In Table 1,
we show an example of masked microdata where 2-anonymity is satisfied.

Age | Zip Sex | Illness

50 | 43102 | M | Colon Cancer
30 |43102 | F Breast Cancer
30 |43102 | F HIV

20 43102 | M | Diabetes

20 43102 | M | Diabetes

50 43102 | M | Heart Disease

Table 1: Patient masked microdata satisfying 2-anonymity.

In this example the set of key attributes is composed from: Age, Zip and
Sex. We notice that a simple SQL statement help us check whether a relation
adhere to k-anonymity:

SELECT COUNT(*) FROM Patient GROUP BY Sex, Zip, Age.

If the results include groups with count less than k, the relation Patient
does not have k-anonymity property with respect to KA = {Age, Zip and Sex}.

The disclosure control methods used to achieve k-anonymity are most of
the times generalization (also known as global recoding) and suppression.

Generalization is used with categorical attributes such as Zip Code and Sez.
This technique is similar with microaggregation except it applies to categori-
cal attributes while microaggregation is performed over continuous attributes.
The domain for an attribute that needs to be generalized is extended to a
domain generalization hierarchy, which includes all possible groups for that
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Figure 1: Examples of domain and value generalization hierarchies

specific attribute. For the attribute Zip Code, the domain contains all exist-
ing Zip Codes, while the domain generalization hierarchy contains all prefixes
(without repetition) for the existing values [Samarati 2001b]. A domain gen-
eralization hierarchy is a total ordered relation between different domains that
can be associated with an attribute. The values from different domains can
be represented in a tree called value generalization hierarchy. We illustrate
domain and value generalization hierarchy in Figure 1:

In order to apply generalization, the data owner must define the domain
and value generalization hierarchies for the attributes he wants to generalize.
The data owner has many choices based on the properties of each attribute. For
instance, the Zip Code attribute can have a different generalization hierarchy
with 6 different domains in which only one digit is removed at the time. The
choice of the hierarchies (domain generalization mainly, the value generaliza-
tion hierarchy usually is generated based on the chosen domain generalization
hierarchy) is an important factor in the success of the masking process.

When two or more attributes are generalized the data owner can create
a generalization lattice to visualize all possible combination (see Figure 2).
Generalization lattices are introduced by LeFevre [LeFevre et al. 2005].

The generalization method (also called full domain generalization or global
recoding) maps the entire domain of a key attribute in initial microdata to a
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Figure 2: Generalization lattice for Zip and Sex attribute

more general domain from its domain generalization hierarchy [Samarati 2001,
Sweeney 2002b)].

Using only generalization every initial microdata can be transformed to a
masked microdata that satisfy k-anonymity. Practical experiments have shown
that the amount of generalization is too high and the resulting microdata will
usually be useless. This is the reason why a second method called suppression
is used to reduce the information loss created by generalization.

Suppression means to remove tuples from the microdata that destroy k-
anonymity (have a frequency less than k). After each generalization we can
easily compute the number of tuples that have a frequency of key attribute
values less than k. If this number is below a choused threshold we would be
better off if we remove those tuple and we avoid an extra generalization.

Using generalization and suppression we can obtain different masked micro-
data that satisfy k-anonymity property. It is easy to prove that if k-anonymity
is achieved for a node X in the generalization lattice, k-anonymity is satisfied
for every node from the node X to the upper level of the lattice [Samarati
2001]. From the construction of the lattice we know that on every path we
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Figure 3: Example for minimal generalization with suppression threshold (TS)

lose information when we move up in the lattice. Therefore, the data owner
is interested in finding the node or nodes that are closer to the bottom of the
lattice. A node X that satisfies k-anonymity and there is no other node Y
such that X in on the path from root to Y (X different of Y') represents a
minimal generalization [Samarati 2001]. The data owner wants to find one or
all minimal generalization that creates k-anonymity property.

For the same initial microdata we can have different minimal generalization
based on the threshold selected for suppression. In Figure 3, we show between
the parentheses how many tuples does not satisfy k-anonymity for every gen-
eralization. It is easy to show that for every initial microdata and every gener-
alization lattice, the numbers of records not satisfying k-anonymity decreases
when the amount of generalization increases. Therefore on every path we must
have increasing numbers from the upper level node to the bottom.

The Table 2 shows which node corresponds to minimal generalizations
for different values of TS. We notice that the minimal generalization is not
unique, but reduces considerably the number of generalizations that satisfy
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k-anonymity.

TS [0,1,2 3 45,6 7.8,9 > 10

Node | < 8y, Zy> | < 8o, Zy> | < So.Z1> | = 51, Zo >and

<So,Zl> <507ZO>

Table 2: Minimal generalization for different threshold (TS) values

An important feature of k-anonymity is that there are several efficient algo-
rithms which determine a minimal generalization with a suppression threshold
that satisfy k-anonymity [Samarati 2001, LeFevre et al. 2005, Sweeney 2002b].

4. COMPARISON BETWEEN DISCLOSURE RISK AND K-ANONYMITY

In the previous sections we presented disclosure risk measures for microag-
gregation and k-anonymity property for generalization and suppression. Al-
though they are defined differently we could find similarities between our for-
mulation for disclosure risk and k-anonymity definition. First we note that
microaggregation and generalization are similar, we can consider microaggre-
gation a form of generalization for continuous attributes. Therefore, we can
talk about k-anonymity property for a masked microdata where microaggre-
gation was applied. We will analyze in details this scenario with the use of
illustrations. The second possibility, when we want to compute disclosure risk
for a masked microdata with generalization and suppression, requires the use
of the disclosure risk formulation for discrete attributes presented in a previous
paper [Truta et al. 2004b].

To illustrate the disclosure risk measures and k-anonymity property we
consider the initial microdata with three different masked microdata in Figure
4. Age and Sex are considered key attributes. In each masked microdata the
microaggregation is applied for attribute Age with different sizes (2, 4 and 8).
In Figure 5, we show the number of cluster with the same size and the number
of records in corresponding clusters of the specified size.
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Figure 4: Initial microdata and three masked microdata
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Figure 5: Characterization of data based on cluster sizes

The next step in performing this example is to compute classification ma-
trices for each masked microdata. Applying the definition, we obtain the
matrices C, Cy and Cj of size 8 x 8 corresponding to M M, M My and M Mj
respectively:

0 0 0 0 0 ... 0

4 0 ... 0

8 0 0 0 0 0

Ci=[ 00 0 =4 0 . 0

0 0 0 00 0
0000O0GO0T OO
20000000
0000O0GO0TO0O
. 0000O0GO0TO0O
57100000000
6 0000000
0000O0GO0TO0O
0000O0GO0T OO

Since all records have a unique combination of key attributes in initial
microdata, only first column has non-zero elements. We consider the following
three weight matrices:

8 0 0 2
0 0 0 1 2 8
Wi=] 0 0 0| We=| 7 7
Sy ;
0 0 0 7 7 7
4.0 0 0
2 2 0 0
Ws=| 0 0 0 0
0 0 0 0
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All requirements for those matrices are considered. The owner of the data
chooses the data values in the weight matrix, for which we provide three exam-
ples (Wi,Ws,and W3). Such matrices instantiate the disclosure risk measure
based on the data owner’s privacy concerns. It is easy to notice that the first
weight matrix correspond to DRy, the second to DRyax. The value 2/7 is
chosen due to the requirement that the sum of all weights must be equal with
the number of records in the initial microdata, which is 8, and the requirement
that all weights should be equal for computing maximal disclosure risk. In the
case of W3, records with double occurrence in masked microdata would be
considered unsafe, but their weight is lowered compared with unique elements.
The owner of the data considers all records with three or more occurrences
safe, therefore their weight is 0. In Table 3, we show the disclosure risk values
for each combination of sampling set and disclosure risk weight matrix.

W1 | W2 | W3
MM1 | 0 0.5 0.25
MM2 | 0 0.375 | 0.125
MM3 | 0 0.25 | 0.0625

Table 3: Disclosure risk values

From this example we notice, as expected, that when the size parameter
for microaggregation increases disclosure risk decrease.

Every combination of key attribute values occurs two or more times for
each masked microdata presented above. On the other hand there is a key
attribute value combination that occurs exactly twice for every microdata set.
We can conclude that all three masked microdata satisfy 2-anonymity property
and none of them satisfy 3-anonymity property.

By comparing the masked microdata sets from Figure 4, we note that there
are some differences between them. The disclosure risk measures capture those
differences by including in their formulations the frequency count of key at-
tribute value combination (for maximal and weighted disclosure risk). We also
note that minimal disclosure risk is 0 if and only if the masked microdata
satisfy 2-anonymity property. More than that, a proper choice of weight ma-
trix (with non zero values on all possible positions based on weight matrix
requirements on the first k rows and zero value anywhere else) determines a
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weighted disclosure risk with value 0 if and only if the masked microdata sat-
isfy k-anonymity property. We can safely conclude that disclosure risk measure
has a greater flexibility than k-anonymity and can be easily customized by the
data owner based on initial microdata privacy requirements. On the other end,
k-anonymity property can be obtained automatically with efficient algorithms.

5. CONCLUSIONS

A customizable disclosure risk measure for microdata disclosure control
technique and k-anonymity property were discussed in this paper. Those dis-
closure risk measures and the degree of anonymity can be computed for any
masking process, and they may become an important decision factor for the
owner of the data in selecting which disclosure control methods he should ap-
ply to a given initial microdata. We established the similarities that exist
between those two methods to assess the level of protection for individuals
represented in the initial microdata. The global disclosure risk measures offer
more information about the level of protection and they can be customized
based on the specific privacy requirements for a given microdata. On the
other end, k-anonymity property can be obtained automatically with efficient
algorithms, while the usage of the global disclosure risk measures still involves
human intervention.
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