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Abstract. In this work some integral operators are studied and the
author determines conditions for the univalence of these integral operators.

Key words : integral operator, univalence.

2000 Mathematics Subject Classification. Primary 30C45.

1. Introduction

Let U = {z ∈ C : |z| < 1} be the unit disc in the complex plane and let A
be the class of functions which are analytic in the unit disk normalized with
f(0) = f ′(0)− 1 = 0.

Let S the class of the functions f ∈ A which are univalent in U.

2. Preliminary results

In order to prove our main results we will use the theorems presented in
this section.

Theorem 2.1.[3]. Assume that f ∈ A satisfies condition∣∣∣∣z2f ′(z)

f 2(z)
− 1

∣∣∣∣ < 1, z ∈ U, (1)

then f is univalent in U .
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Theorem 2.2.[4]. Let α be a complex number, Reα > 0 and f(z) = z +
a2z

2 + . . . is a regular function in U. If

1− |z|2Reα

Reα

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1, (2)

for all z ∈ U , then for any complex number β, Reβ ≥ Reα the function

Fβ(z) =

[
β

∫ z

0

uβ−1 f ′(u)du

] 1
β

= z + . . . (3)

is regular and univalent in U .

Schwarz Lemma [1]. Let f(z) the function regular in the disk UR = {z ∈ C; |z| < R} ,
with |f(z)| < M, M fixed. If f(z) has in z = 0 one zero with multiply ≥ m,
then

|f(z)| < M

Rm
|z|m , z ∈ UR (4)

the equality (in the inequality (4) for z 6= 0) can hold only if f(z) = eiθ M
Rm zm,

where θ is constant.

3.Main results

Theorem 3.1. Let g ∈ A, γ be a complex number such that Reγ ≥ 1, M be
a real number and M > 1.

If
|zg′(z)| < M, z ∈ U (5)

and

|γ| ≤ 3
√

3

2M
(6)

then the function

Tγ(z) =

[
γ

∫ z

0

uγ−1
(
eg(u)

)γ
du

] 1
γ

(7)

is in the class S.
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Proof. Let us consider the function

f(z) =

∫ z

0

(
eg(u)

)γ
du (8)

which is regular in U.
The function

h(z) =
1

|γ|
zf ′′(z)

f ′(z)
(9)

where the constant |γ| satisfies the inequality (6), is regular in U.
From (9) and (8) it follows that

h(z) =
γ

|γ|
zg′(z). (10)

Using (10) and (5) we have

|h(z)| < M (11)

for all z ∈ U. From (10) we obtain h(0) = 0 and applying Schwarz-Lemma we
obtain

1

|γ|

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ M |z| (12)

for all z ∈ U, and hence, we obtain

(
1− |z|2

) ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ |γ|M |z|
(
1− |z|2

)
. (13)

Let us consider the function Q : [0, 1] → <, Q(x) = x (1− x2) , x = |z|.
We have

Q(x) ≤ 2

3
√

3
(14)

for all x ∈ [0, 1]. From (14), (13) and (6) we obtain

(
1− |z|2

) ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1. (15)

for all z ∈ U. From (8) we obtain f ′(z) =
(
eg(z)

)γ
. Then, from (15) and

Theorem 2.2 for Reα = 1 it follows that the function Tγ is in the class S.
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Theorem 3.2. Let g ∈ A, satisfy (1), γ be a complex number with Reγ ≥
1, M be a real number, M > 1 and |γ − 1| ≤ 54 M4

(12M4+1)
√

12 M4+1+36 M4−1
. If

|g(z)| < M, z ∈ U, (16)

then the function

Hγ(z) =

[
γ

∫ z

0

u2γ−2
[
eg(u)

)γ−1
du

] 1
γ

(17)

is in the class S.

Proof. We observe that

Hγ(z) =

[
γ

∫ z

0

uγ−1
(
ueg(u)

)γ−1
du

] 1
γ

. (18)

Let us consider the function

h(z) =

∫ z

0

(
ueg(u)

)γ−1
du. (19)

The function h is regular in U .
From (19) we obtain

h′′(z)

h′(z)
= (γ − 1)

zg′(z) + 1

z
(20)

and hence, we have

(
1− |z|2

) ∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ = |γ − 1|
(
1− |z|2

)
|zg′(z) + 1| (21)

for all z ∈ U . From (21) we get

(
1− |z|2

) ∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ ≤ |γ − 1|
(
1− |z|2

) (∣∣∣∣z2g′(z)

g2(z)

∣∣∣∣ |g2(z)|
|z|

+ 1

)
(22)

for all z ∈ U.
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By the Schwarz Lemma also |g(z)| ≤ M |z|, z ∈ U and using (22) we
obtain(

1− |z|2
) ∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ ≤ |γ − 1|
(
1− |z|2

) (∣∣∣∣z2g′(z)

g2(z)
− 1

∣∣∣∣ M2|z|+ M2|z|+ 1

)
(23)

for all z ∈ U.
Since g satisfies the condition (1) then from (23) we have

(
1− |z|2

) ∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ ≤ |γ − 1|
(
1− |z|2

) (
2M2|z|+ 1

)
(24)

for all z ∈ U.
Let us consider the function G : [0, 1] → <, G(x) = (1− x2) (2M2x +

1), x = |z|.
We have

G(x) ≤ (12 M4 + 1)
√

12 M4 + 1 + 36 M4 − 1

54 M4
(25)

for all x ∈ [0, 1].
Since |γ − 1| ≤ 54 M4

(12 M4+1)
√

12 M4+1+36 M4−1
, from (25) and (24) we conclude

that (
1− |z|2

) ∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ ≤ 1. (26)

for all z ∈ U.
Now (26) and Theorem 2.2 for Re α = 1 imply that the function Hγ is in

the class S.

Remark. For 0 < M ≤ 1, Theorem 3.1 and Theorem 3.2 hold only in the
case g(z) = Kz, where |K| = 1.
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