
ACTA UNIVERSITATIS APULENSIS No 14/2007

COMPUTATIONAL COMPLEXITY AND GRAPHS

Angel Garrido

Abstract. As we know, there exist many interesting mathematical
problems in Theoretical Computer Science, as the comparison of charac-
ters between strings, or the acceptation / decision of languages by Turing
Machines. Also others, as the ”halting problem” or the ”travel salesman
problem”, are undecidable. And many other remain open, only conjectured.

We can establish some results, known as Hierarchy Theorems. For in-
stance, the famous classes P and NP are the first two in the tower of com-
plexity classes, if we consider the polynomial-time hierarchy.

And we know that the proof of the conjectured inclusion: NP ⊂ P,
because the relation P ⊂ NP is obvious, results the greatest open problem
in actual Mathematics. But it could be solved by a counterexample.

The Hierarchy Theorems constitutes the result of successive attempts to
clarify the relation between both classes: P and NP . We will consider many
other classes, modulating our requirements.

There you have a very interesting challenge for the human mind in our
time, as were the old famous Hilbert’s Problems for the Mathematics in the
past Century.

So, we consider here some approximations to the relation between the
classes P and NP. Our purpose is to contribute to clarify this question.
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1. Deterministic Case

The resources measure will be considered as a function of the instance
size. And we look at worst-case scenarios, as upper bound.

Given an input size, n, the amount of resources needed could be the max-
imum, over all inputs, i, of size n, of the amount of resources needed for
instance i. Such size of the instance, i, is the length of the string that en-
codes it. We denote the size of i as: |i| .

We define a resource bound as the monotone nondecreasing function:

f : N → [0, +∞) = R+ ∪ {0}

And we can admit more natural problem specific measures, for the input
size, than its length. For instance, the number of nodes (or vertices). We can
consider only the visited nodes, or all in general, when we work with a forest
(unconnected graphs), a tree (connected graphs), or simply, a particular
graph.

Frequently, we find infinite computation problems. Then, we will be
interested in the resources needed, and how they grow when the input size
increases.

The more usual Resource Bounds posses their proper name.
So:

nO(1) ↔ polynomial
2nO(1) ↔ exponential
2no(1) ↔ subexponential
O (log n) ↔ logarithmic

Now, we will establish previously the bounds of allotted space and time.
For this, we have these tools: space-constructible and time-constructible func-
tions.

The class of languages that can be decided in time O [t (n)], on a TM , is
denoted:

DTIME [t (n)]

And the class of languages that can be decided in space O [s (n)], on a
TM , is:
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DSPACE [s (n)]

This permits two initial Hierarchy Theorems:

Space Hierarchy Theorem. Let si : N → [0, +∞) = R+∪{0} , i = 1,
2, be such s2 is space-constructible and s2 ∈ ω (s1) . Then, we have the strict

inclusion:
DSPACE [s1 (n)] ⊂ DSPACE [s2 (n)]

Time Hierarchy Theorem. Let ti : N → [0, +∞) = R+ ∪ {0} , i = 1,
2, be such t2 is time-constructible and t2 ∈ ω (t1) . Then, we have the strict

inclusion:
DTIME [t1 (n)] ⊂ DTIME [t2 (n)]

The computations on a sequential machine (TM) will be considered space
efficient, if they take no more than logarithmic work space. E. g., deciding
whether a graph is acyclic can be done in logarithmic space.

And our computations on a sequential machine (TM) will be considered
time efficient, if they take no more than polynomial time.

For instance, the known problems of Graph Connectivity and Digraph
Critical Path.

We denote L the class of all all decision problems that can be solved in
space:

O (log n)

From these, we can also define other space-bounded complexity classes,
as:

PSPACE ≡ ∪c�0DSPACE [nc] EXPSPACE ≡ ∪c�0DSPACE
[
2nc]

Almost all the aforementioned decision problems are examples of mem-
bership to PSPACE. But not in the case of Generalized Checkers, which is
in EXPSPACE.

From the Space Hierarchy Theorem, we can deduce that:
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L ⊂ PSPACE ⊂ EXPSPACE

And from the Time Hierarchy Theorem, we can find:

P ⊂ E ⊂ EXP

about the Converse, we know that:

DSPACE [s (n)] ⊆ ∪c�0DTIME
[
2c·s(n)

]
true for any space constructible function s (n) , such that: s (n) ≥ log n.

Also we know, as a particular case, that:

L ⊆ P ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE

some of these inclusions must be strict, but such strictness is still only con-
jectured.

2. Non-Deterministic Case

We can also consider a non-deterministic Turing Machine, NTM , which
can be viewed as a formalization of a proof system. So, it works interact-
ing between an all-powerful prover and a computationally limited verifier.
Such NTM permits the characterization of the complexity for more general
computational problems.

Also we can view, in a NTM , a computation as a path, in its configuration
directed graph (digraph).

Its vertices or nodes will be all possible configurations of the digraph.
Whereas the links, or arcs between them, correspond to the transitions

amongst configurations.
The non-determinism character refers to the possibility of choice between

some different alternatives, according with the information provided by the
prover.

Apart from the aforementioned resources, of space and time, we may
consider, for instance, the amount of non-determinism the TM needs.

The hierarchy theorems are now:
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Space Hierarchy Theorem. Let si : N → [0, +∞) = R+∪{0} , i = 1,
2, be such s2 is space-constructible and s2 ∈ ω (s1) . Then, we have the strict
inclusion:

NSPACE [s1] ⊂ NSPACE [s2]

Non-deterministic Time Hierarchy Theorem. Let ti : N →
[0, +∞) = R+ ∪ {0} , i = 1, 2, be such t2 is time-constructible and t2 ∈
ω (t1 (n + 1)) . Then, we have the strict inclusion:

NTIME [t1] ⊂ NTIME [t2]

where NTIME [t (n)] will be the class of languages which are decidable by a
NTM in time O [t (n)] .

And NSPACE [s (n)], the class of languages which are decidable by a
NTM in space O [s (n)] .

From such classes, we construct:

NP ≡ ∪c�0NTIME [nc]

as the class of languages with short efficiently verifiable membership proofs.
As typical NP languages, we can show the known ISO and SAT.
Relative to ISO, an isomorphism is equivalent to an efficiently verifiable

short proof.
And respect to SAT, a satisfying truth-value assignment. The SAT lan-

guage solves the satisfiability problem. Remember the equivalence between
solving a problem and deciding a language.

The SAT is one of hardest languages, into the class NP.
Also, in this step, we would define the non-deterministic corresponding

classes:

NE ≡ ∪c�0NTIME
[
2c(n)

]
NEXP ≡ ∪c�0NTIME

[
2nc]

From the Hierarchy Theorems, we have:
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NP ⊂ NE ⊂ NEXP

It is also true that:

DTIME [t (n)] ⊂ NTIME [t (n)]

that is, the nondeterministic class contains its deterministic counterpart.
What happens to the converse inclusion? We know that:

NTIME [t (n)] ⊆ ∪c�0DTIME
[
2c·t(n)

]
Into the deterministic time-bounded classes, the smallest known contain-

ing NP is EXP.
Many more questions, and very relevant ones, remain in progressive ad-

vance, as whether the non-deterministic classes are closed under complemen-
tarity.

Because of temporal limits, we can give an interesting result:

coNTIME [t (n)] ⊆ ∪c�0NTIME
[
2c·t(n)

]

3. Open Question

Certainly, many questions remain open.
For instance:

· the subexponential membership proofs of the closure of SAT.
· NP 6= coNP . It does not exist polynomial size proofs for coNP

languages.
Such conjecture is harder than the classical: NP 6= P.

· If we refine the sequence of inclusions, until reaching:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE

some of such inclusions are strict, but not all.
Only is conjectured where is 6=.
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4. Alternating Case

It is also very interesting the case of an alternating TM.
The alternating TM, ATM , is a generalization of the non-deterministic

TM, to control the complexity of languages like the Graph Ramsey Triple.
We introduce now the class of languages accepted by an ATM in polyno-

mial time, with no more than k alternations and an existential initial state,
denoted:Σp

k+1.
And also the analogous definition, but with a universal, instead of exis-

tential, initial state, as: Πp
k+1.

Such classes form two hierarchies, inter-related, with the properties:

Σp
k = co Πp

k

Σp
k ∪ Πp

k ⊆ Σp
k+1 ∩ Πp

k+1

and if:

Σp
k = Πp

k

we obtain:

∪lΣ
p
l = Σp

k

From these last two properties, we have that the subsequent hierarchy of
classes:

Σp
0 ⊆ Σp

1 ⊆ Σp
2 ⊆ . . . ⊆ Σp

k ⊆ Σp
k+1 ⊆ . . . (◦)

has the upward collapse property :
If two subsequent levels coincide: Σp

k = Σp
k+1, then the whole hierarchy

collapses to such level:

Σp
i = Σp

k, ∀i ∈ N∗ = N ∪ {0}

The aforementioned hierarchy , as (◦) , is called Polynomial Time Hier-
archy. The union of the classes in such hierarchy is denoted by PH.

But if we use exponential-time ATM , instead of polynomial-time ones, we
similarly obtain the Exponential Time Hierarchy. It is denoted by EXPH.
We have:
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EXPH = Σexp
k ∪ Πexp

k

Observe that:

Σp
0 = Πp

0 = P
Σp

1 = NP
Πp

1 = coNP

In a similar way:

Σexp
0 = Πexp

0 = EXP
ΣEXP

1 = NEXP
Πexp

1 = coNEXP

It is conjectured that one more alternation perhaps permits to decide
more languages, within the same bounds.

In particular, it can be conjectured that the polynomial size hierarchy
does not collapse. An assumption stronger than the aforementioned: NP 6=
coNP.

If the equality holds, then such hierarchy collapses at its first level.
Finally, we will formulate the analogous results, for the case of alterna-

tion:

Alternating Space Hierarchy Theorem. Let si : N → [0, +∞) =
R+ ∪ {0} , i = 1, 2, be such s2 is space constructible and s2 ∈ ω (s1) . Then,

we have the strict inclusion:

ASPACE [s1] ⊂ ASPACE [s2]

Alternating Time Hierarchy Theorem. Let ti : N → [0, +∞) =
R+∪{0} , i = 1, 2, be such t2 is time constructible and t2 ∈ ω (t1) . Then, we
have the strict inclusion:

ATIME [t1] ⊂ ATIME [t2]
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5. Final Note

For temporal reasons, we do not introduce the logically equivalent struc-
ture of circuits, with their gates. Interesting issue, because gives access to the
simulation of nondeterministic time bounded computations by small circuits.

A possible question: Whether non-deterministic polynomial time has
polynomial size circuits or not?

Our answer must be that such situation is not possible, unless the poly-
nomial size hierarchy collapses to its second level.

As you know:

If NP ⊆ P/poly ⇒ Σp
2 = Πp

2

With super-polynomial time and a pair of alternations, the polynomial
size surely is not sufficient.

Through the same technique, we can see that exponential-time with a
couple of alternations requires circuits of exponential-size.
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