# A NOTE ON STRONG DIFFERENTIAL SUBORDINATIONS USING A GENERALIZED SĂLĂGEAN OPERATOR AND RUSCHEWEYH OPERATOR

## ALINA ALB LUPAS

ABSTRACT. In the present paper we establish several strong differential subordinations regardind the extended new operator  $DR_{\lambda}^{m}$  defined by the Hadamard product of the extended generalized Sălăgean operator  $D_{\lambda}^{m}$  and the extended Ruscheweyh derivative  $R^{m}$ , given by  $DR_{\lambda}^{m}: \mathcal{A}_{n\zeta}^{*} \to \mathcal{A}_{n\zeta}^{*}, \ DR_{\lambda}^{m}f(z,\zeta) = (D_{\lambda}^{m}*R^{m}) f(z,\zeta)$ , where  $\mathcal{A}_{n\zeta}^{*} = \{f \in \mathcal{H}(U \times \overline{U}), \ f(z,\zeta) = z + a_{n+1}(\zeta) z^{n+1} + \dots, \ z \in U, \ \zeta \in \overline{U}\}$  is the class of normalized analytic functions.

2000 Mathematics Subject Classification: 30C45, 30A20, 34A40. Keywords: strong differential subordination, univalent function, convex function, best dominant, extended differential operator, convolution product.

#### 1. Introduction

Denote by U the unit disc of the complex plane  $U=\{z\in C: |z|<1\}$ ,  $\overline{U}=\{z\in C: |z|\leq 1\}$  the closed unit disc of the complex plane and  $\mathcal{H}(U\times\overline{U})$  the class of analytic functions in  $U\times\overline{U}$ .

Let

$$\mathcal{A}_{n\zeta}^{*} = \{ f \in \mathcal{H}(U \times \overline{U}), \ f(z,\zeta) = z + a_{n+1}(\zeta) z^{n+1} + \dots, \ z \in U, \zeta \in \overline{U} \},$$

where  $a_k(\zeta)$  are holomorphic functions in  $\overline{U}$  for  $k \geq 2$ , and

$$\mathcal{H}^*[a,n,\zeta] = \{ f \in \mathcal{H}(U \times \overline{U}), \ f(z,\zeta) = a + a_n(\zeta) \ z^n + a_{n+1}(\zeta) \ z^{n+1} + \dots, \ z \in U, \zeta \in \overline{U} \},$$
 for  $a \in C$  and  $n \in N$ ,  $a_k(\zeta)$  are holomorphic functions in  $\overline{U}$  for  $k \geq n$ .

Generalizing the notion of differential subordinations, J.A. Antonino and S. Romaguera have introduced in [7] the notion of strong differential subordinations, which was developed by G.I. Oros and Gh. Oros in [9], [8].

**Definition No. 1** [9] Let  $f(z,\zeta)$ ,  $H(z,\zeta)$  analytic in  $U \times \overline{U}$ . The function  $f(z,\zeta)$  is said to be strongly subordinate to  $H(z,\zeta)$  if there exists a function w analytic in U, with w(0) = 0 and |w(z)| < 1 such that  $f(z,\zeta) = H(w(z),\zeta)$  for all  $\zeta \in \overline{U}$ . In such a case we write  $f(z,\zeta) \prec \prec H(z,\zeta)$ ,  $z \in U$ ,  $\zeta \in \overline{U}$ .

**Remark No. 1** [9] (i) Since  $f(z,\zeta)$  is analytic in  $U \times \overline{U}$ , for all  $\zeta \in \overline{U}$ , and univalent in U, for all  $\zeta \in \overline{U}$ , Definition 1 is equivalent to  $f(0,\zeta) = H(0,\zeta)$ , for all  $\zeta \in \overline{U}$ , and  $f(U \times \overline{U}) \subset H(U \times \overline{U})$ .

(ii) If  $H(z,\zeta) \equiv H(z)$  and  $f(z,\zeta) \equiv f(z)$ , the strong subordination becomes the usual notion of subordination.

We have need the following lemmas to study the strong differential subordinations.

**Lemma No. 1** [4] Let  $h(z,\zeta)$  be a convex function with  $h(0,\zeta) = a$  for every  $\zeta \in \overline{U}$  and let  $\gamma \in C^*$  be a complex number with  $Re\gamma \geq 0$ . If  $p \in \mathcal{H}^*[a,n,\zeta]$  and

$$p(z,\zeta) + \frac{1}{\gamma} z p'_z(z,\zeta) \prec \prec h(z,\zeta),$$

then

$$p(z,\zeta) \prec \prec g(z,\zeta) \prec \prec h(z,\zeta)$$
,

where  $g(z,\zeta) = \frac{\gamma}{nz^{\frac{\gamma}{n}}} \int_0^z h(t,\zeta) t^{\frac{\gamma}{n}-1} dt$  is convex and it is the best dominant.

**Lemma No. 2** [4] Let  $g(z,\zeta)$  be a convex function in  $U \times \overline{U}$ , for all  $\zeta \in \overline{U}$ , and let

$$h(z,\zeta)=g(z,\zeta)+n\alpha zg_z'(z,\zeta),\quad z\in U,\zeta\in\overline{U},$$

where  $\alpha > 0$  and n is a positive integer. If

$$p(z,\zeta) = g(0,\zeta) + p_n(\zeta) z^n + p_{n+1}(\zeta) z^{n+1} + \dots, \quad z \in U, \zeta \in \overline{U},$$

is holomorphic in  $U \times \overline{U}$  and

$$p(z,\zeta) + \alpha z p_z'(z,\zeta) \prec \prec h(z,\zeta), \quad z \in U, \zeta \in \overline{U},$$

then

$$p(z,\zeta) \prec \prec g(z,\zeta)$$

and this result is sharp.

We also extend the generalized Sălăgean differential operator [6] and Ruscheweyh derivative [10] to the new class of analytic functions  $\mathcal{A}_{n\zeta}^*$  introduced in [8].

**Definition No. 2** [5] For  $f \in \mathcal{A}_{n\zeta}^*$ ,  $\lambda \geq 0$  and  $n, m \in N$ , the extended operator  $D_{\lambda}^m$  is defined by  $D_{\lambda}^m : \mathcal{A}_{n\zeta}^* \to \mathcal{A}_{n\zeta}^*$ ,

$$D_{\lambda}^{0} f(z,\zeta) = f(z,\zeta)$$
  

$$D_{\lambda}^{1} f(z,\zeta) = (1-\lambda) f(z,\zeta) + \lambda z f'(z,\zeta) = D_{\lambda} f(z,\zeta)$$

$$D_{\lambda}^{m+1}f(z,\zeta) = (1-\lambda)D_{\lambda}^{m}f(z,\zeta) + \lambda z\left(D_{\lambda}^{m}f(z,\zeta)\right)' = D_{\lambda}\left(D_{\lambda}^{m}f(z,\zeta)\right), z \in U, \zeta \in \overline{U}.$$

**Remark No. 2** If 
$$f \in \mathcal{A}_{n\zeta}^*$$
 and  $f(z) = z + \sum_{j=n+1}^{\infty} a_j(\zeta) z^j$ , then  $D_{\lambda}^m f(z,\zeta) = z + \sum_{j=n+1}^{\infty} \left[1 + (j-1)\lambda\right]^m a_j(\zeta) z^j$ ,  $z \in U$ ,  $\zeta \in \overline{U}$ .

**Definition No. 3** [5] For  $f \in \mathcal{A}_{n\zeta}^*$ ,  $n, m \in \mathbb{N}$ , the extended operator  $\mathbb{R}^m$  is defined by  $\mathbb{R}^m : \mathcal{A}_{n\zeta}^* \to \mathcal{A}_{n\zeta}^*$ ,

$$R^{0}f(z,\zeta) = f(z,\zeta)$$

$$R^{1}f(z,\zeta) = zf'(z,\zeta)$$
...
$$(m+1)R^{m+1}f(z,\zeta) = z(R^{m}f(z,\zeta))' + mR^{m}f(z,\zeta), z \in U, \zeta \in \overline{U}.$$

**Remark No. 3** If 
$$f \in \mathcal{A}_{n\zeta}^*$$
,  $f(z,\zeta) = z + \sum_{j=n+1}^{\infty} a_j(\zeta) z^j$ , then  $R^m f(z,\zeta) = z + \sum_{j=n+1}^{\infty} C_{m+j-1}^m a_j(\zeta) z^j$ ,  $z \in U$ ,  $\zeta \in \overline{U}$ .

We extend the differential operator studied in [1], [2] to the new class of analytic functions  $\mathcal{A}_{n\zeta}^*$ .

**Definition No. 4** Let  $\lambda \geq 0$  and  $m \in N \cup \{0\}$ . Denote by  $DR_{\lambda}^m$  the extended operator given by the Hadamard product (the convolution product) of the extended generalized Sălăgean operator  $D_{\lambda}^m$  and the extended Ruscheweyh operator  $R^m$ ,  $DR_{\lambda}^m$ :  $\mathcal{A}_{n\zeta}^* \to \mathcal{A}_{n\zeta}^*$ ,

$$DR_{\lambda}^{m} f\left(z,\zeta\right) = \left(D_{\lambda}^{m} * R^{m}\right) f\left(z,\zeta\right).$$

**Remark No. 4** If 
$$f \in \mathcal{A}_{n\zeta}^*$$
,  $f(z,\zeta) = z + \sum_{j=n+1}^{\infty} a_j(\zeta) z^j$ , then  $DR_{\lambda}^m f(z,\zeta) = z + \sum_{j=n+1}^{\infty} C_{m+j-1}^m \left[1 + (j-1)\lambda\right]^m a_j^2(\zeta) z^j$ ,  $z \in U$ ,  $\zeta \in \overline{U}$ .

**Remark No. 5** For  $\lambda = 1$  we obtain the Hadamard product  $SR^m$  [3] of the extended Sălăgean operator  $S^m$  and the extended Ruscheweyh derivative  $R^m$ .

## 2. Main results

**Definition No. 5** Let  $\delta \in [0,1)$ ,  $\lambda \geq 0$  and  $m \in N$ . A function  $f(z,\zeta) \in \mathcal{A}_{n\zeta}^*$  is said to be in the class  $\mathcal{DR}_m(\delta,\lambda,\zeta)$  if it satisfies the inequality

Re 
$$(DR_{\lambda}^{m} f(z,\zeta))'_{z} > \delta$$
,  $z \in U, \zeta \in \overline{U}$ . (1)

**Theorem No. 1** Let  $g(z,\zeta)$  be a convex function such that  $g(0,\zeta) = 1$  and let h be the function  $h(z,\zeta) = g(z,\zeta) + \frac{1}{c+2}zg'_z(z,\zeta)$ ,  $z \in U$ ,  $\zeta \in \overline{U}$ , c > 0. If  $\lambda \geq 0$ ,  $n, m \in N$ ,  $f \in \mathcal{DR}_m(\delta,\lambda,\zeta)$  and  $F(z,\zeta) = I_c(f)(z,\zeta) = \frac{c+2}{z^{c+1}} \int_0^z t^c f(t,\zeta) dt$ ,  $z \in U$ ,  $\zeta \in \overline{U}$ , then

$$(DR_{\lambda}^{m} f(z,\zeta))_{z}' \prec \prec h(z,\zeta), z \in U, \zeta \in \overline{U}, \tag{2}$$

implies

$$(DR_{\lambda}^{m}F(z,\zeta))_{z}' \prec \prec g(z,\zeta), z \in U, \zeta \in \overline{U},$$

and this result is sharp.

*Proof.* We obtain that

$$z^{c+1}F(z,\zeta) = (c+2)\int_0^z t^c f(t,\zeta) dt.$$
 (3)

Differentiating (3), with respect to z, we have  $(c+1) F(z,\zeta) + zF'_z(z,\zeta) = (c+2) f(z,\zeta)$  and

$$(c+1) DR_{\lambda}^{m} F(z,\zeta) + z \left(DR_{\lambda}^{m} F(z,\zeta)\right)_{z}' = (c+2) DR_{\lambda}^{m} f(z,\zeta), \quad z \in U, \zeta \in \overline{U}. \tag{4}$$

Differentiating (4) with respect to z we have

$$\left(DR_{\lambda}^{m}F\left(z,\zeta\right)\right)_{z}^{\prime} + \frac{1}{c+2}z\left(DR_{\lambda}^{m}F\left(z,\zeta\right)\right)_{z}^{\prime\prime} = \left(DR_{\lambda}^{m}f\left(z,\zeta\right)\right)_{z}^{\prime}, \quad z \in U, \zeta \in \overline{U}. \quad (5)$$

Using (5), the strong differential subordination (2) becomes

$$(DR_{\lambda}^{m}F(z,\zeta))_{z}' + \frac{1}{c+2}z(DR_{\lambda}^{m}F(z,\zeta))_{z^{2}}'' \prec \prec g(z,\zeta) + \frac{1}{c+2}zg_{z}'(z,\zeta).$$
 (6)

Denote

$$p(z,\zeta) = (DR_{\lambda}^{m}F(z,\zeta))_{z}', \quad z \in U, \zeta \in \overline{U}.$$

$$(7)$$

Replacing (7) in (6) we obtain

$$p\left(z,\zeta\right)+\frac{1}{c+2}zp_{z}'\left(z,\zeta\right)\prec\prec g\left(z,\zeta\right)+\frac{1}{c+2}zg_{z}'\left(z,\zeta\right),z\in U,\zeta\in\overline{U}.$$

Using Lemma 2 we have

$$p\left(z,\zeta\right)\prec\prec g\left(z,\zeta\right),z\in U,\zeta\in\overline{U},i.e.\left(DR_{\lambda}^{m}F\left(z,\zeta\right)\right)_{z}^{\prime}\prec\prec g\left(z,\zeta\right),z\in U,\zeta\in\overline{U},$$

and this result is sharp.

**Thoerem No. 2** Let  $h(z,\zeta) = \frac{\zeta + (2\delta - \zeta)z}{1+z}$ ,  $z \in U$ ,  $\zeta \in \overline{U}$ ,  $\delta \in [0,1)$  and c > 0. If  $\lambda \geq 0$ ,  $m \in N$  and  $I_c$  is given by Theorem 1, then

$$I_{c}\left[\mathcal{DR}_{m}\left(\delta,\lambda,\zeta\right)\right]\subset\mathcal{DR}_{m}\left(\delta^{*},\lambda,\zeta\right),\tag{8}$$

where 
$$\delta^* = 2\delta - \zeta + \frac{2(c+2)(\zeta-\delta)}{n}\beta\left(\frac{c+2}{n} - 2\right)$$
 and  $\beta\left(x\right) = \int_0^1 \frac{t^{x+1}}{t+1}dt$ .

*Proof.* The function h is convex and using the same steps as in the proof of Theorem 1 we get from the hypothesis of Theorem 2 that

$$p(z,\zeta) + \frac{1}{c+2} z p'_z(z,\zeta) \prec h(z,\zeta),$$

where  $p(z,\zeta)$  is defined in (7).

Using Lemma 1 for  $\gamma = c + 2$ , we deduce that

$$p(z,\zeta) \prec \prec g(z,\zeta) \prec \prec h(z,\zeta)$$
,

that is

$$(DR_{\lambda}^{m}F\left(z,\zeta\right))_{z}^{\prime}\prec\prec g\left(z,\zeta\right)\prec\prec h\left(z,\zeta\right),$$

where

$$\begin{split} g\left(z,\zeta\right) &= \frac{c+2}{nz^{\frac{c+2}{n}}} \int_{0}^{z} t^{\frac{c+2}{n}-1} \frac{\zeta + \left(2\delta - \zeta\right)t}{1+t} dt = \\ &\left(2\delta - \zeta\right) + \frac{2\left(c+2\right)\left(\zeta - \delta\right)}{nz^{\frac{c+2}{n}}} \int_{0}^{z} \frac{t^{\frac{c+2}{n}-1}}{1+t} dt. \end{split}$$

Since g is convex and  $g\left(U \times \overline{U}\right)$  is symmetric with respect to the real axis, we deduce

Re 
$$(DR_{\lambda}^{m}F(z,\zeta))_{z}' \ge \min_{|z|=1} \operatorname{Re} g(z,\zeta) = \operatorname{Re} g(1,\zeta) = \delta^{*} =$$
 (9)  

$$2\delta - \zeta + \frac{2(c+2)(\zeta-\delta)}{n}\beta\left(\frac{c+2}{n} - 2\right).$$

From (9) we deduce inclusion (8).

**Theorem No. 3** Let  $g(z,\zeta)$  be a convex function,  $g(0,\zeta) = 1$  and let h be the function  $h(z,\zeta) = g(z,\zeta) + zg'_z(z,\zeta)$ ,  $z \in U$ ,  $\zeta \in \overline{U}$ . If  $\lambda \geq 0$ ,  $m \in N \cup \{0\}$ ,  $f \in \mathcal{A}^*_{n\zeta}$  and verifies the strong differential subordination

$$\left(DR_{\lambda}^{m}f\left(z,\zeta\right)\right)_{z}^{\prime}\prec\prec h\left(z,\zeta\right),\quad z\in U,\zeta\in\overline{U},\tag{10}$$

then

$$\frac{DR_{\lambda}^{m}f\left(z,\zeta\right)}{z}\prec\prec g\left(z,\zeta\right),z\in U,\zeta\in\overline{U},$$

and this result is sharp.

 $Proof. \text{ For } f \in \mathcal{A}_{n\zeta}^*, \ f(z,\zeta) = z + \sum_{j=n+1}^{\infty} a_j \left(\zeta\right) z^j \text{ we have } \\ DR_{\lambda}^m f\left(z,\zeta\right) = z + \sum_{j=n+1}^{\infty} C_{m+j-1}^m \left[1 + (j-1)\,\lambda\right]^m a_j^2 \left(\zeta\right) z^j, \ z \in U, \ \zeta \in \overline{U}. \\ \text{Consider } p\left(z,\zeta\right) = \frac{DR_{\lambda}^m f(z,\zeta)}{z} = \frac{z + \sum_{j=n+1}^{\infty} C_{m+j-1}^m \left[1 + (j-1)\lambda\right]^m a_j^2 \left(\zeta\right) z^j}{z} = 1 + \sum_{j=n+1}^{\infty} C_{m+j-1}^m \left[1 + (j-1)\,\lambda\right]^m a_j^2 \left(\zeta\right) z^{j-1}. \\ \text{The expression of } f\left(z,\zeta\right) = \frac{C_{m+j-1}^m f(z,\zeta)}{z} = \frac{$ We have  $p(z,\zeta) + zp'_z(z,\zeta) = (DR^m_{\lambda}f(z,\zeta))'_z, z \in U, \zeta \in \overline{U}$ . Then  $(DR_{\lambda}^{m}f(z,\zeta))_{z}^{\prime}\prec\prec h(z,\zeta)$ ,  $z\in U,\zeta\in\overline{U}$ , becomes  $p(z,\zeta)+zp_{z}^{\prime}(z,\zeta)\prec\prec h(z,\zeta)=g(z,\zeta)+zg_{z}^{\prime}(z,\zeta)$ ,  $z\in U,\zeta\in\overline{U}$ . By using Lemma 2 we obtain  $p(z,\zeta)\prec\prec g(z,\zeta)$ ,  $z\in U,\zeta\in\overline{U}$ , i.e.  $\frac{DR_{\lambda}^{m}f(z,\zeta)}{z}\prec\prec g(z,\zeta)$ ,  $z\in U,\zeta\in\overline{U}$ .

**Theorem No. 4** Let  $h(z,\zeta)$  be a convex function,  $h(0,\zeta)=1$ . If  $\lambda \geq 0$ ,  $m \in N \cup \{0\}, f \in \mathcal{A}_{n\zeta}^*$  and verifies the strong differential subordination

$$(DR_{\lambda}^{m} f(z,\zeta))_{z}' \prec \prec h(z,\zeta), \quad z \in U, \zeta \in \overline{U}, \tag{11}$$

then

$$\frac{DR_{\lambda}^{m}f\left(z,\zeta\right)}{z}\prec\prec g\left(z,\zeta\right)\prec\prec h\left(z,\zeta\right),z\in U,\zeta\in\overline{U},$$

where  $g(z,\zeta) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t,\zeta) t^{\frac{1}{n}-1} dt$  is convex and it is the best dominant.

 $Proof. \text{ For } f \in \mathcal{A}_{n\zeta}^*, \ f(z,\zeta) = z + \sum_{j=n+1}^{\infty} a_j \left(\zeta\right) z^j \text{ we have } \\ DR_{\lambda}^m f\left(z,\zeta\right) = z + \sum_{j=n+1}^{\infty} C_{m+j-1}^m \left[1 + \left(j-1\right)\lambda\right]^m a_j^2 \left(\zeta\right) z^j, \ z \in U, \ \zeta \in \overline{U}. \\ \text{Consider } p\left(z,\zeta\right) = \frac{DR_{\lambda}^m f(z,\zeta)}{z} = \frac{z + \sum_{j=n+1}^{\infty} C_{m+j-1}^m \left[1 + \left(j-1\right)\lambda\right]^m a_j^2 \left(\zeta\right) z^j}{z} = 1 + \sum_{j=n+1}^{\infty} C_{m+j-1}^m \left[1 + \left(j-1\right)\lambda\right]^m a_j^2 \left(\zeta\right) z^{j-1} \in \mathcal{H}^* \left[1, n, \zeta\right]. \\ \text{We have } x \in \mathcal{C} \cap \mathcal{C}$ We have  $p(z,\zeta) + zp'_z(z,\zeta) = (DR^m_{\lambda}f(z,\zeta))'_z, z \in U, \zeta \in \overline{U}$ . Then  $(DR^m_{\lambda}f(z,\zeta))'_z \prec \prec h(z,\zeta), z \in U, \zeta \in \overline{U}$ , becomes  $p(z,\zeta) + zp'_z(z,\zeta) \prec \prec h(z,\zeta), z \in U, \zeta \in \overline{U}$ . By using Lemma 1 for  $\gamma = 1$ , we obtain  $p(z,\zeta) \prec \prec g(z,\zeta) \prec \prec h(z,\zeta), z \in U, \zeta \in \overline{U}$ , i.e.  $\frac{DR^m_{\lambda}f(z,\zeta)}{z} \prec \prec g(z,\zeta) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t,\zeta) t^{\frac{1}{n}-1} dt \prec \prec h(z,\zeta),$ 

 $z \in U$ ,  $\zeta \in \overline{U}$ , and  $g(z, \zeta)$  is convex and it is the best dominant.

Corollary No. 1 Let  $h(z,\zeta) = \frac{\zeta + (2\beta - \zeta)z}{1+z}$  a convex function in  $U \times \overline{U}$ ,  $0 \le \beta < 1$ . If  $\lambda \ge 0$ ,  $m, n \in N$ ,  $f \in \mathcal{A}_{n\zeta}^*$  and verifies the strong differential subordination

$$(DR_{\lambda}^{m} f(z,\zeta))_{z}' \prec \prec h(z,\zeta), \quad z \in U, \zeta \in \overline{U}, \tag{12}$$

then

$$\frac{DR_{\lambda}^{m}f(z,\zeta)}{z}\prec\prec g\left(z,\zeta\right)\prec\prec h\left(z,\zeta\right),z\in U,\zeta\in\overline{U},$$

where g is given by  $g(z,\zeta)=2\beta-\zeta+\frac{2(\zeta-\beta)}{nz^{\frac{1}{n}}}\int_0^z\frac{t^{\frac{1}{n}-1}}{1+t}dt,\ z\in U,\ \zeta\in\overline{U}.$  The function g is convex and it is the best dominant.

*Proof.* Following the same steps as in the proof of Theorem 4 and considering  $p(z,\zeta) = \frac{DR_{\lambda}^m f(z,\zeta)}{z}$ , the strong differential subordination (12) becomes

$$p(z,\zeta) + zp'_z(z,\zeta) \prec \prec h(z,\zeta) = \frac{\zeta + (2\beta - \zeta)z}{1+z}, \quad z \in U, \zeta \in \overline{U}.$$

By using Lemma 1 for  $\gamma=1,$  we have  $p\left(z,\zeta\right)\prec\prec g\left(z,\zeta\right)\prec\prec h\left(z,\zeta\right),\ z\in U,$   $\zeta\in\overline{U},$  i.e.

$$\frac{DR_{\lambda}^{m}f(z,\zeta)}{z} \prec \prec g(z,\zeta) = \frac{1}{nz^{\frac{1}{n}}} \int_{0}^{z} h(t,\zeta) t^{\frac{1}{n}-1} dt = \frac{1}{nz^{\frac{1}{n}}} \int_{0}^{z} t^{\frac{1}{n}-1} \frac{\zeta + (2\beta - \zeta) t}{1+t} dt$$
$$= 2\beta - \zeta + \frac{2(\zeta - \beta)}{nz^{\frac{1}{n}}} \int_{0}^{z} \frac{t^{\frac{1}{n}-1}}{1+t} dt, \quad z \in U, \zeta \in \overline{U}.$$

**Theorem No. 5** Let  $g(z,\zeta)$  be a convex function such that  $g(0,\zeta)=1$  and let h be the function  $h(z,\zeta)=g(z,\zeta)+zg_z'(z,\zeta), z\in U, \zeta\in \overline{U}$ . If  $\lambda\geq 0, m\in N\cup\{0\}, f\in \mathcal{A}_{n\zeta}^*$  and verifies the strong differential subordination

$$\left(\frac{zDR_{\lambda}^{m+1}f\left(z,\zeta\right)}{DR_{\lambda}^{m}f\left(z,\zeta\right)}\right)_{z}^{\prime} \prec \prec h\left(z,\zeta\right), \quad z \in U, \zeta \in \overline{U}, \tag{13}$$

then

$$\frac{DR_{\lambda}^{m+1}f\left(z,\zeta\right)}{DR_{\lambda}^{m}f\left(z,\zeta\right)}\prec\prec g\left(z,\zeta\right),z\in U,\zeta\in\overline{U},$$

and this result is sharp.

$$\begin{aligned} & \textit{Proof. For } f \in \mathcal{A}_{n\zeta}^*, \, f(z,\zeta) = z + \sum_{j=n+1}^{\infty} a_j\left(\zeta\right) z^j \text{ we have} \\ & \textit{D}R_{\lambda}^m f\left(z,\zeta\right) = z + \sum_{j=n+1}^{\infty} C_{m+j-1}^m \left[1 + \left(j-1\right)\lambda\right]^m a_j^2\left(\zeta\right) z^j, \, z \in U, \, \zeta \in \overline{U}. \\ & \text{Consider } p\left(z,\zeta\right) = \frac{DR_{\lambda}^{m+1} f(z,\zeta)}{DR_{\lambda}^m f(z,\zeta)} = \frac{z + \sum_{j=n+1}^{\infty} C_{m+j}^{m+1} [1 + (j-1)\lambda]^{m+1} a_j^2(\zeta) z^j}{z + \sum_{j=n+1}^{\infty} C_{m+j-1}^m [1 + (j-1)\lambda]^m a_j^2(\zeta) z^j} = \frac{1 + \sum_{j=n+1}^{\infty} C_{m+j-1}^m [1 + (j-1)\lambda]^m a_j^2(\zeta) z^{j-1}}{1 + \sum_{j=n+1}^{\infty} C_{m+j-1}^m [1 + (j-1)\lambda]^m a_j^2(\zeta) z^{j-1}}. \end{aligned}$$

We have 
$$p_z'(z,\zeta) = \frac{\left(DR_{\lambda}^{m+1}f(z,\zeta)\right)_z'}{DR_{\lambda}^mf(z,\zeta)} - p\left(z,\zeta\right) \cdot \frac{\left(DR_{\lambda}^mf(z,\zeta)\right)_z'}{DR_{\lambda}^mf(z,\zeta)}.$$
  
Then  $p\left(z,\zeta\right) + zp_z'\left(z,\zeta\right) = \left(\frac{zDR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^mf(z,\zeta)}\right)_z'.$ 

Relation (13) becomes  $p(z,\zeta) + zp_z'(z,\zeta)$   $\prec \prec h(z,\zeta) = g(z,\zeta) + zg_z'(z,\zeta)$ ,  $z \in U, \zeta \in \overline{U}$ , and by using Lemma 2 we obtain  $p(z,\zeta) \prec \prec g(z,\zeta)$ ,  $z \in U, \zeta \in \overline{U}$ , i.e.  $\frac{DR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)} \prec \prec g(z,\zeta)$ ,  $z \in U, \zeta \in \overline{U}$ .

**Theorem No. 6** Let  $g(z,\zeta)$  be a convex function such that  $g(0,\zeta)=1$  and let h be the function  $h(z,\zeta)=g(z,\zeta)+\frac{n\lambda}{m\lambda+1}zg_z'(z,\zeta),\ z\in U,\ \zeta\in U,\ \lambda\geq 0,\ m,n\in N.$  If  $f\in\mathcal{A}_{n\zeta}^*$  and the strong differential subordination

$$\frac{m+1}{\left(m\lambda+1\right)z}DR_{\lambda}^{m+1}f\left(z,\zeta\right)-\frac{m\left(1-\lambda\right)}{\left(m\lambda+1\right)z}DR_{\lambda}^{m}f\left(z,\zeta\right)\prec\prec h\left(z,\zeta\right),\quad z\in U,\zeta\in\overline{U},$$

holds, then

$$(DR_{\lambda}^{m} f(z,\zeta))_{z}' \prec \prec g(z,\zeta), z \in U, \zeta \in \overline{U},$$

and this result is sharp.

 $\begin{aligned} &Proof. \text{ With notation} \\ &p(z,\zeta) = (DR_\lambda^m f(z,\zeta))_z' = 1 + \sum_{j=n+1}^\infty C_{m+j-1}^m \left[1 + (j-1)\lambda\right]^m a_j^2\left(\zeta\right) z^{j-1} \text{ and} \\ &p\left(0,\zeta\right) = 1, \text{ we obtain for } f(z,\zeta) = z + \sum_{j=n+1}^\infty a_j\left(\zeta\right) z^j, \\ &p\left(z,\zeta\right) + zp_z'\left(z,\zeta\right) = 1 + \sum_{j=n+1}^\infty C_{m+j-1}^m \left[1 + (j-1)\lambda\right]^m j^2 a_j^2\left(\zeta\right) z^{j-1} = \\ &\frac{m+1}{\lambda z} \left[z + \sum_{j=n+1}^\infty C_{m+j}^{m+1} \left[1 + (j-1)\lambda\right]^{m+1} a_j^2\left(\zeta\right) z^j\right] + \frac{\lambda - m - 1}{\lambda} - \\ &\sum_{j=n+1}^\infty C_{m+j-1}^m \left[1 + (j-1)\lambda\right]^m a_j^2\left(\zeta\right) z^{j-1} \left(m - 1 + \frac{1}{\lambda}\right) j - \\ &\sum_{j=n+1}^\infty C_{m+j-1}^m \left[1 + (j-1)\lambda\right]^m a_j^2\left(\zeta\right) z^{j-1} \frac{m(1-\lambda)}{\lambda} = \\ &\frac{m+1}{\lambda z} DR_\lambda^{m+1} f\left(z,\zeta\right) - \left(m - 1 + \frac{1}{\lambda}\right) \left(DR_\lambda^m f\left(z,\zeta\right)\right)_z' - \frac{m(1-\lambda)}{\lambda z} DR_\lambda^m f\left(z,\zeta\right) = \\ &\frac{m+1}{\lambda z} DR_\lambda^{m+1} f\left(z,\zeta\right) - \left(m - 1 + \frac{1}{\lambda}\right) p\left(z,\zeta\right) - \frac{m(1-\lambda)}{\lambda z} DR_\lambda^m f\left(z,\zeta\right). \end{aligned}$   $\text{Therefore } p\left(z,\zeta\right) + \frac{\lambda}{m\lambda + 1} zp_z'\left(z,\zeta\right) = \frac{m+1}{(m\lambda + 1)z} DR_\lambda^{m+1} f\left(z,\zeta\right) - \frac{m(1-\lambda)}{(m\lambda + 1)z} DR_\lambda^m f\left(z,\zeta\right).$   $\text{We have } p\left(z,\zeta\right) + \frac{\lambda}{m\lambda + 1} zp_z'\left(z,\zeta\right) \prec \prec h\left(z,\zeta\right) = g\left(z,\zeta\right) + \frac{n\lambda}{m\lambda + 1} zg_z'\left(z,\zeta\right), z \in U, \zeta \in \overline{U}.$   $\text{By using Lemma 2 we obtain } p\left(z,\zeta\right) \prec \prec g\left(z,\zeta\right), z \in U, \zeta \in \overline{U}. \text{ i.e.} \end{aligned}$ 

**Theorem No. 7** Let  $h(z,\zeta)$  be a convex function such that  $h(0,\zeta) = 1$ . If  $\lambda \geq 0$ ,  $m, n \in N$ ,  $f \in \mathcal{A}_{\zeta}^{*}$  and the strong differential subordination

 $(DR_{\lambda}^m f(z,\zeta))'_z \prec \prec g(z,\zeta), \ z \in U, \zeta \in \overline{U}, \text{ and this result is sharp.}$ 

$$\frac{m+1}{\left(m\lambda+1\right)z}DR_{\lambda}^{m+1}f\left(z,\zeta\right)-\frac{m\left(1-\lambda\right)}{\left(m\lambda+1\right)z}DR_{\lambda}^{m}f\left(z,\zeta\right)\prec\prec h\left(z,\zeta\right),\quad z\in U,\zeta\in\overline{U},$$

holds, then

$$\left(DR_{\lambda}^{m}f\left(z,\zeta\right)\right)_{z}^{\prime}\prec\prec g\left(z,\zeta\right)\prec\prec h\left(z,\zeta\right),z\in U,\zeta\in\overline{U},$$

where  $g(z,\zeta) = \frac{m\lambda+1}{\sqrt{m}} \int_0^z h(t,\zeta) t^{\frac{m\lambda+1}{\lambda n}-1} dt$  is convex and it is the best dominant.

*Proof.* With notation

 $p(z,\zeta) = \left(DR_{\lambda}^{m}f(z,\zeta)\right)_{z}' = 1 + \sum_{j=n+1}^{\infty} C_{m+j-1}^{m} \left[1 + (j-1)\lambda\right]^{m} a_{j}^{2}(\zeta) z^{j-1} \text{ and } p(0,\zeta) = 1, \text{ we obtain for } f(z,\zeta) = z + \sum_{j=n+1}^{\infty} a_{j}(\zeta) z^{j},$   $p(z,\zeta) + \frac{\lambda}{m\lambda+1} z p_{z}'(z,\zeta) = \frac{m+1}{(m\lambda+1)z} DR_{\lambda}^{m+1} f(z,\zeta) - \frac{m(1-\lambda)}{(m\lambda+1)z} DR_{\lambda}^{m} f(z,\zeta).$ 

$$p\left(z,\zeta\right) + \frac{\lambda}{m\lambda+1}zp_{z}'\left(z,\zeta\right) = \frac{m+1}{(m\lambda+1)z}DR_{\lambda}^{m+1}f\left(z,\zeta\right) - \frac{m(1-\lambda)}{(m\lambda+1)z}DR_{\lambda}^{m}f\left(z,\zeta\right).$$

We have  $p(z,\zeta) + \frac{\lambda}{m\lambda+1}zp'(z,\zeta) \prec \prec h(z,\zeta), z \in U, \zeta \in \overline{U}$ . Since  $p(z,\zeta) \in \mathcal{H}^*[1,n,\zeta]$ , using Lemma 1 for  $\gamma = \frac{m\lambda+1}{\lambda}$ , we obtain  $p(z,\zeta) \prec \prec g(z,\zeta) \prec \prec h(z,\zeta)$ ,  $z \in U, \zeta \in \overline{U}$ , i.e.  $(DR_{\lambda}^m f(z,\zeta))' \prec \prec g(z,\zeta) = \frac{m\lambda+1}{\lambda n z} \int_0^z h(t,\zeta) t^{\frac{m\lambda+1}{\lambda n}-1} dt \prec \prec h(z,\zeta)$ ,  $z \in U, \zeta \in \overline{U}$ , and  $g(z,\zeta)$  is convey and it is the best dominant.  $h(z,\zeta), z \in U, \zeta \in \overline{U}$ , and  $g(z,\zeta)$  is convex and it is the best dominant.

**Corollary No. 2** Let  $h(z,\zeta) = \frac{\zeta + (2\beta - \zeta)z}{1+z}$  a convex function in  $U \times \overline{U}$ ,  $0 \le \beta < 1$ . If  $\lambda \ge 0$ ,  $m,n \in N$ ,  $f \in \mathcal{A}_{n\zeta}^*$  and verifies the strong differential subordination

$$\frac{m+1}{(m\lambda+1)z}DR_{\lambda}^{m+1}f\left(z,\zeta\right) - \frac{m\left(1-\lambda\right)}{(m\lambda+1)z}DR_{\lambda}^{m}f\left(z,\zeta\right) \prec \prec h(z,\zeta), \quad z \in U, \zeta \in \overline{U}, \tag{14}$$

then

$$\left(DR_{\lambda}^{m}f\left(z,\zeta\right)\right)_{z}^{\prime}\prec\prec g\left(z,\zeta\right)\prec\prec h\left(z,\zeta\right),z\in U,\zeta\in\overline{U},$$

where g is given by  $g(z,\zeta)=2\beta-\zeta+\frac{2(\zeta-\beta)(m\lambda+1)}{\lambda nz\frac{m\lambda+1}{\lambda n}}\int_0^z\frac{t^{\frac{m\lambda+1}{\lambda n}-1}}{1+t}dt,\ z\in U,\ \zeta\in\overline{U}.$  The function g is convex and it is the best dominant.

*Proof.* Following the same steps as in the proof of Theorem 7 and considering  $p(z,\zeta) = (DR_{\lambda}^m f(z,\zeta))_z'$ , the strong differential subordination (14) becomes

$$p(z,\zeta) + \frac{\lambda}{m\lambda + 1} z p_z'(z,\zeta) \prec \prec h(z,\zeta) = \frac{\zeta + (2\beta - \zeta)z}{1 + z}, \quad z \in U, \zeta \in \overline{U}.$$

By using Lemma 1 for  $\gamma = \frac{m\lambda + 1}{\lambda}$ , we have  $p(z,\zeta) \prec \prec g(z,\zeta) \prec \prec h(z,\zeta)$ ,  $z \in U$ ,  $\zeta \in \overline{U}$ , i.e.

$$(DR_{\lambda}^{m}f(z,\zeta))_{z}' \prec \prec g(z,\zeta) = \frac{m\lambda + 1}{\lambda n z^{\frac{m\lambda + 1}{\lambda n}}} \int_{0}^{z} h(t,\zeta) t^{\frac{m\lambda + 1}{\lambda n} - 1} dt =$$

$$\frac{m\lambda+1}{\lambda nz^{\frac{m\lambda+1}{\lambda n}}} \int_0^z t^{\frac{m\lambda+1}{\lambda n}-1} \frac{\zeta+(2\beta-\zeta)t}{1+t} dt = 2\beta-\zeta+\frac{2(\zeta-\beta)(m\lambda+1)}{\lambda nz^{\frac{m\lambda+1}{\lambda n}}} \int_0^z t^{\frac{m\lambda+1}{\lambda n}-1} \frac{t^{\frac{m\lambda+1}{\lambda n}-1}}{1+t} dt,$$

 $z \in U, \zeta \in \overline{U}.$ 

## References

- [1] A. Alb Lupaş, Certain differential subordinations using a generalized Sălăgean operator and Ruscheweyh operator I, Journal of Mathematics and Applications I, No. 33 (2010), 67-72.
- [2] A. Alb Lupaş, Certain differential superordinations using a generalized Sălăgean and Ruscheweyh operators, Acta Universitatis Apulensis nr. 25, 2011, 31-40.
- [3] A. Alb Lupaş, Certain strong differential subordinations using Sălăgean and Ruscheweyh operators, Advances in Applied Mathematical Analysis, Volume 6, Number 1 (2011), 27–34.
- [4] A.Alb Lupaş, G. I. Oros, Gh. Oros, On special strong differential subordinations using Sălăgean and Ruscheweyh operators, Journal of Computational Analysis and Applications, Vol. 14, No. 2, 2012, 266-270.
- [5] A. Alb Lupas, On special strong differential subordinations using a generalized Sălăgean operator and Ruscheweyh derivative, Journal of Concrete and Applicable Mathematics, Vol. 10, No.'s 1-2, 2012, 17-23.
- [6] F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Ind. J. Math. Math. Sci., 2004, no.25-28, 1429-1436.
- [7] J.A. Antonino, S. Romaguera, Strong differential subordination to Briot-Bouquet differential equations, Journal of Differential Equations, 114 (1994), 101-105.
  - [8] G.I. Oros, On a new strong differential subordination, (to appear).
- [9] G.I. Oros, Gh. Oros, Strong differential subordination, Turkish Journal of Mathematics, 33 (2009), 249-257.
- [10] St. Ruscheweyh, New criteria for univalent functions, Proc. Amet. Math. Soc., 49(1975), 109-115.

Alina Alb Lupaş

Department of Mathematics and Computer Science

University of Oradea

Address str. Universitatii nr. 1, 410087 Oradea, Romania

email: dalb@uoradea.ro