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Abstract. In the present paper we extent the fundamental property that if
h(z) and g(z) are regular functions in the open unit disc D with the properties

h(0) = g(0) = 0, h(z) maps D onto λ-spiral region and Re
{
eiλ g

′(z)
h′(z)

}
> 0, then

Re
{
eiλ g(z)h(z)

}
> 0, and then give some applications of this to the harmonic functions.
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1. Introduction

A planar harmonic mapping in the unit disc D = {z ∈ C||z| < 1} is a complex-
valued harmonic function f which maps D onto some planar domain f(D). Since
D is simply connected, the mapping f has a canonical decomposition f = h + g,
where h and g are analytic in D, as usual, we call h the analytic part of f and g
the co-analytic part of f . An elegant and complete account of the theory of planar
harmonic mapping is given in Duren’s monograph [2].

Lewy [4] proved in 1936 that the harmonic function f is locally univalent in a
simply connected domain D1 if and only if its Jacobien

Jf (z) =
∣∣h′(z)∣∣2 − ∣∣g′(z)∣∣2 > 0

is different from zero in D1. In view of this result, locally univalent harmonic map-
pings in the unit disc are either sense-reversing if∣∣g′(z)∣∣ > ∣∣h′(z)∣∣
in D1 or sense-preserving if ∣∣g′(z)∣∣ < ∣∣h′(z)∣∣
in D1. Throughout this paper we will restrict ourselves to the study of sense-
preserving harmonic mappings. However, since f is sense-preserving if and only if f
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is sense-reserving, all the results obtained in this article regarding sense-preserving
harmonic mappings can be adapted to sense-reversing ones. Note that f = h+ g is
sense-preserving in D if and only if h′(z) does not vanish in the unit disc and the

second-complex dilatation w(z) = g′(z)
h′(z) has the property |w(z)| < 1 in D. Therefore

we can take h(z) = z + a2z
2 + · · · , g(z) = b1z + b2z

2 + · · · . Thus the class of all
harmonic mappings being sense-preserving in the unit disc can be defined by

SH =
{
f = h(z) + g(z) |h(z) = z + a2z

2 + · · · ,

g(z) = b1z + b2z
2 + · · · , f sense-preserving

}
.

Thus SH contains the standard class S of analytic univalent functions.
Let Ω be the family of functions φ(z) which are regular in D and satisfying the

conditions φ(0) = 0, |φ(z)| < 1 for all z ∈ D. Denote by P, the family of functions
p(z) = 1 + p1z + p2z

2 + · · · which are regular in D such that

p(z) =
1 + φ(z)

1− φ(z)

for some function φ(z) ∈ Ω for all z ∈ D.
Next, let S∗(λ) denote the family of functions s(z) = z+ c2z

2 + c3z
3 + · · · which

are regular in D such that

eiλz
s′(z)

s(z)
= (cosλ)p(z) + i sinλ

(
|λ| < π

2

)
for some p(z) ∈ P for all z ∈ D.

Let s1(z) = z + α2z
2 + α3z3 + · · · and s2(z) = z + β2z

2 + β3z
3 + · · · be analytic

functions in D. If there exists φ(z) ∈ Ω such that s1(z) = s2(φ(z)) for all z ∈ D.
Then we say that s1(z) is subordinate to s2(z) and we write s1(z) ≺ s2(z), then
s1(D) ⊂ s2(D).

Now, we consider the following class of harmonic mappings in the plane:

S∗HS(λ) =
{
f = h(z) + g(z) |h(z) ∈ S∗(λ),

Re(eiλw(z)) = Re

(
eiλ

g′(z)

h′(z)

)
> 0
}
.

In the present paper we investigate the class S∗HS(λ).
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2. Main Results

Lemma 1. Let h(z) be an element of S∗(λ), then

rA(λ,−r) ≤ |h(z)| ≤ rA(λ, r), |z| = r < 1, |λ| < π/2 (1)

where

A(λ, r) =
(1 + r)cosλ(1−cosλ)

(1− r)cosλ(1+cosλ)
.

This inequality is sharp because the extremal function is

h∗(z) =
z

(1− z)2(cosλ)e−iλ
. (2)

Proof. Since h(z) ∈ S∗(λ), then

eiλz
h′(z)

h(z)
= (cosλ)p(z) + i sinλ

(
|λ| < π

2
, z ∈ D

)
.

Thus, we have

eiλz
h′(z)

h(z)
= (cosλ)

1 + φ(z)

1− φ(z)
+ i sinλ

or

z
h′(z)

h(z)
≺ 1 + e−2iλz

1− z
. (3)

Geometrically, the meaning of the relation (3) is that the image of D lies inside

the open disc with the center C(r) =
(

1+(cos 2λ)r2

1−r2 ,− sin 2λ
1−r2

)
and the radius ρ(r) =

2(cosλ)r
1−r2 . Therefore we have∣∣∣∣zh′(z)h(z)

− 1 + e−2iλr2

1− r2

∣∣∣∣ ≤ 2(cosλ)r

1− r2

which gives

1− 2(cosλ)r + (cos 2λ)r2

r(1− r2)
≤ ∂

∂r
log |h(z)| ≤ 1 + 2(cosλ)r + (cos 2λ)r2

r(1− r2)
, (4)

integrating the last inequality (4) from 0 to r we obtain (1).
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Corollary 2. If h(z) ∈ S∗(λ), then

1

B(λ, r)
≤
∣∣∣∣zh′(z)h(z)

∣∣∣∣ ≤ B(λ, r), |λ| < π/2, |z| = r < 1 (5)

where

B(λ, r) =

√
(1− r2)2 + 4(cos2 λ)r2 + 2(cosλ)r

1− r2
.

This inequality sharp because the extremal function is given by (2).

Corollary 3. If h(z) ∈ S∗(λ), then

A(λ,−r)
B(λ, r)

≤
∣∣h′(z)∣∣ ≤ A(λ, r)B(λ, r), |λ| < π/2, |z| = r < 1 (6)

where

A(λ, r) =
(1 + r)cosλ(1−cosλ)

(1− r)cosλ(1+cosλ)
.

and

B(λ, r) =

√
(1− r2)2 + 4(cos2 λ)r2 + 2(cosλ)r

1− r2
.

This inequality sharp because the extremal function is given by (2).

Corollary 2 and Corollary 3 are simple consequences of Lemma 1.

Theorem 4. Let f = h(z) + g(z) be an element of S∗HS(λ), then g(z)
h(z) ∈ P for all

z ∈ D.

Proof. Since f = h(z) + g(z) ∈ S∗HS(λ) satisfies the condition

Re

(
eiλ

g′(z)

h′(z)

)
> 0,

we have
1
b1
g′(z)

h′(z)
=

1 + e−2iλφ(z)

1− φ(z)
, φ ∈ Ω

or
1
b1
g′(z)

h′(z)
≺ 1 + e−2iλz

1− z
(7)

for all z ∈ D. Now, we define the function

G(z)

h(z)
=

1
b1
g(z)

h(z)
=

1 + e−2iλφ(z)

1− φ(z)
⇔ G(z)

h(z)
≺ 1 + e−2iλz

1− z
(8)
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for all z ∈ D. Then φ(z) is analytic in D and φ(0) = 0. Taking the logarithmic
differentiation in both sides of (8), we have that

G(z)

h(z)
=
G′(z)

h′(z)
− ceiλzφ′(z)

(1− φ(z))2

h(z)

eiλzh′(z)
, (9)

where c = 1 + e−2iλ. On the other hand, since h(z) is λ-spirallike, then we have

h(z)

eiλzh′(z)
=

1− φ(z)

eiλ + e−iλφ(z)
. (10)

Considering (7), (8), (9) and (10) together we obtain

F (z) =
G(z)

h(z)
=

1 + e−2iλφ(z)

1− φ(z)
− czφ′(z)

(1− φ(z))(1 + e−2iλφ(z))
. (11)

Now, it is easy to realize that the subordination (8) is equivalent to |φ(z)| < 1 for
all z ∈ D. Indeed, assume the contrary: there exists a z1 ∈ D such that |φ(z1)| = 1.
Then by Jack’s Lemma [3], z1φ

′(z1) = kφ(z1) for some real k ≥ 1. For such z1, we
have

F (z1) =
G(z1)

h(z1)
=

1 + e−2iλφ(z1)

1− φ(z1)
− ckφ(z1)

(1− φ(z1))(1 + e−2iλφ(z1))

= F (φ(z1)) /∈ F (D),

because |φ(z1)| = 1 and k ≥ 1. But this contradicts F (z) = G(z)
h(z) ≺

1+e−2iλz
1−z , so the

assumption is wrong, i.e, |φ(z)| < 1 for every z ∈ D.

Theorem 5. Let f = h(z) + g(z) be an element of S∗HS(λ), then

|b1|A(λ,−r)
B2(λ, r)

≤ |g′(z)| ≤ |b1|A(λ, r)B2(λ, r), (12)

where

A(λ, r) =
(1 + r)cosλ(1−cosλ)

(1− r)cosλ(1+cosλ)
,

and

B(λ, r) =

√
(1− r2)2 + 4(cos2 λ)r2 + 2(cosλ)r

1− r2

for all |z| = r < 1.
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Proof. Since

eiλ
g′(z)

h′(z)
= (cosλ)p(z) + i sinλ

then we have

eiλ
g′(z)

h′(z)
= (cosλ)

1 + φ(z)

1− φ(z)
+ i sinλ (φ ∈ Ω).

Thus
1

b1

g′(z)

h′(z)
=

1 + e−2iλφ(z)

1− φ(z)

or
1

b1 cosλ

(
eiλ

g′(z)

h′(z)
− ib1 sinλ

)
= p(z) (13)

for all z ∈ D. On the other hand, since p(z) ∈ P, we know that∣∣∣∣p(z)− 1 + r2

1− r2

∣∣∣∣ ≤ 2r

1− r2
(|z| = r < 1).

Therefore, we have ∣∣∣∣g′(z)h′(z)
− b1(1 + e−2iλr2)

1− r2

∣∣∣∣ ≤ |b1|2(cosλ)r

1− r2

or

|b1|
(
|1 + e−2iλr2| − 2(cosλ)r

)
1− r2

≤
∣∣∣∣g′(z)h′(z)

∣∣∣∣
≤
|b1|

(
|1 + e−2iλr2|+ 2(cosλ)r

)
1− r2

.

(14)

We note that the inequality (14) can be written in the form

|b1|
|h′(z)|
B(λ, r)

≤ |g′(z)| ≤ |b1|B(λ, r)|h′(z)|. (15)

Using Corollary 3 in the inequality (15) we get (12).

Theorem 6. If f = h(z) + g(z) be an element of S∗HS(λ), then

A2(λ,−r)
B2(λ, r)

(1 + |b1|r)2 − (|b1|+ r)2

(1 + |b1|r)2
≤ |Jf |

≤ (A(λ, r)B(λ, r))2 (1− |b1|r)2 − (|b1| − r)2

(1− |b1|r)2

(16)

for all |z| = r < 1, and functions A and B are defined in Corollary 3.
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Proof. Since

eiλ
g′(z)

h′(z)
= eiλ

(b1z + b2z
2 + · · · )′

(z + a2z2 + · · · )′
= eiλ

b1 + 2b2z + · · ·
1 + 2a2z + · · ·

= ω(z),

then ω(0) = eiλb1 = b. Thus ∣∣∣∣eiλ g′(z)h′(z)

∣∣∣∣ = |ω(z)| < 1,

then the function

ϕ(z) =
ω(z)− ω(0)

1− ω(0)ω(z)

satisfies the conditions of Schwarz lemma, thus we have

ω(z) = eiλ
g′(z)

h′(z)
=

b+ ϕ(z)

1 + b̄ϕ(z)
⇔ eiλ

g′(z)

h′(z)
≺ b+ z

1 + b̄z

for all z ∈ D. On the other hand the transformation W (z) = b+z
1+b̄z

maps |z| = r onto
the disc with the center

C(r) =

(
α1(1− r2)

1− (α2
1 + α2

2)r2
,

α2(1− r2)

1− (α2
1 + α2

2)r2

)
and the radius

ρ(r) =
(1− (α2

1 + α2
2))r

1− (α2
1 + α2

2)r2
,

where α1 = Reb = Re(eiαb1), α2 = Imb = Im(eiαb1). Therefore, using the subordi-
nation principle, we can write∣∣∣∣g′(z)h′(z)

− b1(1− r2)

1− |b1|2r2

∣∣∣∣ ≤ (1− |b1|2)r

1− |b1|2r2
. (17)

After the straightforward calculations form (17) we obtain the following inequality

(1 + |b1|r)2 − (|b1|+ r)2

(1 + |b1|r)2
≤

(
1−

∣∣∣∣g′(z)h′(z)

∣∣∣∣2
)

≤ (1− |b1|r)2 − (|b1| − r)2

(1 + |b1|r)2
,

(18)

and than we have

|h′(z)|(1 + |b1|r)2 − (|b1|+ r)2

(1 + |b1|r)2
≤ Jf = |h′(z)|

(
1−

∣∣∣∣g′(z)h′(z)

∣∣∣∣2
)

≤ |h′(z)|(1− |b1|r)
2 − (|b1| − r)2

(1− |b1|r)2

(19)

for all |z| = r < 1. Using the Corollary 3 in the inequality (19) we get (16).

13



E.Y. Duman, Y. Kahramaner and Y. Polatoğlu - On a Subclass of Harmonic...

Corollary 7. Let f = h(z) + g(z) be an element of S∗HS(λ), then∫ r

0

A(λ,−ρ)

B(λ, ρ)

(1− ρ)(1− |b1|)
1 + |b1|ρ

dρ ≤ |f |

≤
∫ r

0
A(λ, ρ)B(λ, ρ)

(1 + ρ)(1 + |b1|)
1 + |b1|ρ

dρ

(20)

for |z| = r < 1, where A and B are defined in Corollary 3.

Proof. Since ∣∣∣∣g′(z)h′(z)
− b1(1− r2)

1− |b1|2r2

∣∣∣∣ ≤ (1− |b1|2)r

1− |b1|2r2

then we have

(1− r)(1 + |b1|)
1− |b1|r

≤ 1 +

∣∣∣∣g′(z)h′(z)

∣∣∣∣ ≤ (1 + r)(1 + |b1|)
1 + |b1|r

(21)

and

(1− r)(1− |b1|)
1 + |b1|r

≤ 1−
∣∣∣∣g′(z)h′(z)

∣∣∣∣ ≤ (1 + r)(1− |b1|)
1− |b1|r

. (22)

On the other hand since f = h(z) + g(z) is a sense-preserving mapping, then

(|h′(z)| − |g′(z)|)|dz| ≤ |df | ≤ (|h′(z)|+ |g′(z)|)|dz|. (23)

Using (21), (22), (23) and Corollary 3, we get the desired result.

Theorem 8. Let f = h(z) + g(z) be an element of S∗HS(λ), then

n∑
k=2

k2|bk − b1ak|2 ≤ |1− b1|2 +
n∑
k=2

k2|ak − bkb1|2. (24)

Proof. The proof of this theorem is based on the Clunie method [1]. Since

eiλ
g′(z)

h′(z)
≺ b+ z

1 + b̄z
⇔ eiλ

g′(z)

h′(z)
=

b+ ϕ(z)

1 + b̄ϕ(z)

then we obtain
eiλ(g′(z)− h′(z)) = (h′(z)− b1g′(z))ϕ(z). (25)

The equality (25) can be written in the form

n∑
k=2

eiλk(bk − akb1)zk +

∞∑
k=n+1

dkz
k =

[
1− b21 +

n∑
k=2

k(ak − bkb1)zk
]
ϕ(z). (26)
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Since (26) has the form K(z) = L(z)ϕ(z), where |ϕ(z)| < 1, it follows that

1

2π

∫ 2π

0
|K(reiθ)|2dθ ≤ 1

2π

∫ 2π

0
|L(reiθ)|2dθ (27)

for each r (0 < r < 1). Expressing (27) in the terms of the coefficients in (26), we
obtain the inequality

n∑
k=2

k2|bk − akb1|2r2n +
∞∑

k=n+1

|dk|2r2n ≤ |1− b1|2 +
n∑
k=2

k2|ak − b1bk|2r2n. (28)

In particular (28) implies

n∑
k=2

k2|bk − akb1|2r2n ≤ |1− b1|2 +

n∑
k=2

k2|ak − b1bk|2r2n. (29)

By letting r → 1 in (29), we conclude that

n∑
k=2

k2|bk − b1ak|2 ≤ |1− b1|2 +

n∑
k=2

k2|ak − bkb1|2.
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İstanbul Kültür University
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