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ABSTRACT. This paper discusses the initial inverse heat problem (backward
heat problem) with time-dependent coefficient. The problem is ill-posed in the
sense that the solution (if it exists) does not depend continuously on the data. Two
regularization solutions of the backward heat problem will be given by a modified
quasi-boundary value method. The Holder type error estimates between the regu-
larization solutions and the exact solution are obtained.
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1. INTRODUCTION

In this paper, we consider the problem of finding the temperature u(z,t), (z,t) €
(0,7) x [0,T7], such that

Bu — p(t) 2, (z,1) € (0,7) x (0,T)
u(0,t) = u(m,t) =0,t € (0,7) (1)
u(z, T) = g(x),x € (0,m)

where b(t), g(x) are given. The problem is called the backward heat problem with
time-dependent coefficient. It is well known that this is an ill-posed problem. The
goal is to set up a regularization process that makes this problem well posed in the
sense of Hadamard:

(1) There is a solution.

(2) The solution is unique.

(3) The solution depends continuously on the data.
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In the simple case b(t) = 1, the problem (1) is investigated in many papers,
such as Clark and Oppenheimer [3], Denche and Bessila [4], Tautenhahn et al [21]
Melnikova et al [11, 12], Trong et al [17, 18], B.Yildiz et al [22, 23].

Although there are many papers on the backward heat equation with the con-

stant coefficient, but there are rarely works considered the backward heat with the
time-dependent coefficient, such as (1). A few works of analytical methods were
presented for this problem, for example [14]. However, the authors in [14] only
used numerical computation method and the stability theory with explicitly error
estimate has not been generalized accordingly. In the present paper, we want to
determine the temperature u(z,t) for 0 <t < T by a modified quasi-boundary value
method with two other approximation problems. Both methods of proving stability
estimates are constructive: we construct stable solutions to the problem that can be
numerically implemented. However, we do not pursue this aspect in this paper, as
our aim here is to obtain stability estimates only. The numerical computation will
be considered in our future research.
This paper is organized as follows: In Section 2, we simply analyze the ill-posedness
of the problem (1) and conditions (1), (2) of Hadamard are addressed in this sec-
tion. In Sections 3 and 4, we introduce two regularization solutions and establish
some error estimates between the exact solution and the regularization solutions,
respectively.

2. THE ILL-POSEDNESS OF THE BACKWARD HEAT PROBLEM

We suppose that b(t) : [0,7] — R is a continuous function on [0,7] satisfying
0 < By < b(t) < By,Vt € [0,T]. Throughout this article, we denote by ||.|| the
L?-norm and <,> denote inner product on L2(0,7). We also suppose that f €
L?((0,T); L*(0,7)) and g € L?(0, ) .

Let 0 = ¢ < co. By H9(0,7) we denote the space of all functions g € L?(0,7) with
the property

00
D (1 +p%)gpl* < o0,
p=1

where g, = 2 [" g(x) sin(pa)da. Then we also define HgHHq = Z;ozl(l—i—pz)q|gp|2.

If ¢ = 0 then H?(0, 7r) is L2(0, ). In the following Theorem, we consider the existence
condition of solution to the problem (1).
Theorem 2.1. The problem (1) has a unique solution u if and only if

gexp (2p2 /OT b(s )ds> < oo. (2)
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Proof. Suppose the Problem (1) has an exact solution u € C([0,T]; H}(0,7)) N
CY((0,T); L?(0, 7)), then u can be formulated in the frequency domain

o0

ety =3 e (57 [ 0€pic) G sinio). 3)

p=1

This implies that

2 T
up(t) =< u(z,t), - sin pr >= exp <p2/t b(f)d{) Ip-

Therefore

() = (5 ' b5)is) g @)

Then

Ju(. )] = Zexp(zp [ ts1as) < .

If (2) holds, then define v(x) be as the function

_ gexp <p2 /O ! b(s)ds) gpsin(pz).

It is easy to see that v € L?(0, 7). Then, we consider the problem of finding u from
the original value v
up — b(t)ugy =0,
u(0,t) = u(m,t) =0, t € (0,7) (5)
u(z,0) =v(z), x € (0,7).
The problem (5) is the direct problem so it has a unique solution u (See [5]). We
have

u(z,t) :g‘; <exp{p2 /Ot b(&)dé} < v(x),sinpx >> sin px.
Thus
u(z,T) = g; (exp{p2 /OT b(€)de} < v(x),sinpr >> sin p. (6)
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Therefore, we get

< v(x), sin p >= exp <p2 /0 ' b(s)ds) . (7

Since (6), (7) and by a simple computation, we get

o
u(z, T) = ng sinpx = g(z).
p=1

Hence, u is the unique solution of (1).

Theorem 2.2 The Problem (1) has at most one solution in C([0,T]; H3(0,7)) N
CY((0,7); L?(0,)). If (1) has a solution u then u is defined by

u(z,t) = Iiexp <p2 /tT b(§)d§> gpsin(pz). (8)

Proof.

The proof is divide into two step.

Step 1. The Problem (1) has at most one solution.

Let u(z, t), v(z,t) be two solutions of Problem (1) such that u,v € C([0,T]; H(0,7))N
CY((0,7); L?(0,)). Put w(zx,t) = u(x,t) — v(z,t). Then w satisfies the equation

w — b(t)wy, =0,
w(0,t) = w(m,t)=0,t € (0,T) (9)
w(z,0) =0, z € (0,7).

Now, setting G(t) = [; w?(z,t)dz (0 <t < T), and by taking the derivative of
G(t), we get

G'(t)=2 /Oww(x,t)wt(x,t)dx = 2b(t) /07r w(z, ) wey (z, t)dx.

Using Green formula, we obtain

G (1) = —2b(1) /0 " w2 (2, 1) da. (10)

By taking the derivative of G'(t) in respect to t, one has
G"(t) = —4b(t) / Wa (@, )W (z, t)d.
0
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By simple computation and using the integral in parts, we get
™
G"(t) = 4b(t) / Way (x, t)wy(x, t)dz
0

= 4b?(t) /Owwi(as,t)daz. (11)

Now, from (8) and applying the Holder inequality, we have

/ wi(x,t)dx:—/ w(z, H)wey(z, t)dx
0 0

([ w%,t)dx)% (] wggc(x,t)dx)? 12)

(G'(1)* < GH)G"(2).

Hence by the Theorem 11 [5], p.65, which gives G(¢) = 0. This implies that u(z,t) =
v(x,t). The proof is completed.

Step 2. The Problem (1) has a solution which is defined in (8).

To prove this, we only check that u satisfy three equations in system (1). By taking
the derivative of u, we have

w = Y e (i Tb(é)d£> gpsin(pz)

Thus (7)-(8)-(9) imply

p
= b(t)ugy.

In spite of the uniqueness, the problem (1) is still illposed and some regularization

methods are necessary. In next Section, we introduce the approximation problem.

3. REGULARIZATION BY A MOLLIFICATION METHOD

In this section, we shall regularize the problem (1) by pertubing the final value
g with a new way. Motivated by the idea of Clark and Oppenheimer [3], we approx-
imate problem by the following problem

uf —b(t)us, = 0, (z,t) € (0,7) x (0,T),
u(0,t) = u(m,t) =0,t € (0,T)
T
o) = s PP bd)
1) =2 ep?* + exp{—p? [;| b(€)dE}

(13)

gpsin(pzx), z € (0, 7).
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where 0 < e < 1,

2 [T ) 2 [T .
Ip(t) = / f(z,t)sin(pz)dz, gp= / g(x) sin(px)dx
T Jo T Jo

and < .,. > is the inner product in L?((0,7)). Note that if b(t) = 1 and k = 0 then
the problem (1) has been considered in [3].
We shall prove that, the (unique) solution u€ of (11) satisfies the following equality

exp{—p? [y b(&)d¢}
2= ep® + exp{—p? [ b(€)dE}

u(2,t) = gpsin(pa). (14)
Lemma 3.1
For M,e,z >0, k > 1, we have the inequality

< (kM)ke! <1n(]\k4k)> 7k.

exk 4+ e~Mz — €

Proof.

Let the function f defined by f(z) = m By taking the derivative of f, one
has

Fla) = ekak=t — Me~M=
—(exh + e Mz)2

The equation f’(x) = 0 gives a unique solution zy such that ek‘xg*l — Me Moo =,
It means that xlg_leMxO = % Thus the function f achieves its maximum at a

unique point z = xg. Thus

1
exf + e Mawo’

f(z) <

, one has

. ~Mzo _ ke k—1
Since e = 17 To

1 1

<
k —Mxzy — k ke k—1"°
€xy + € 0 €Ty + 3720

fz) <

By using the inequality eM®0 > Mz, we get

M _ k—1_Mxg
ke
L
k—1)Mxzo ,Mzo
= e ¢
_ 1 6kMavo
Mk '
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This gives M0 > ]\g—f or kMzy > ln(]\,f—:). Therefore

1 MF
o 2 g ()
Hence, we obtain
1 kM)
fa) < - < M2

Lemma 3.2
For 0 <m < M, we have the following inequality

—mx k k(%—l)
e Eom_q M
o o < (kM)Ten <1n(k€)> :

Proof. )
Since the inequality m < (EM)ke? (ln(]\g—:)) , we obtain

e—m:c

exk 4 e~ Mz (exk + e~ Mx)

IN
| — |
—
e
=
=
™M
N
/)_\
=
S
|5
N
=
| E— |

k1 Mk k(%*l)

< (kEM)Fem <ln( e )) .
In next Theorem, we shall study the existence, the uniqueness and the stability of
a (weak) solution of Problem (6)-(8). In fact, one has
Theorem 3.1 The problem (11) has uniquely a weak solution u¢ € satisfying (10).
The solution depends continuously on g in L?(0,T)).

Proof

The proof is divided into two steps. In Step 1, we prove the existence and the
uniqueness of a solution of (6)-(8). In Step 2, the stability of the solution is given.
Denote W = ([0, T7]; L?(0,7) N L?(0,T; HE (0, 7)) N C(0,T; HE (0, 7)).
Step 1. The existence and the uniqueness of a solution of (6)-(8)
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We divide this step into two parts.
Part A If u¢ € W satisfies (11) then u€ is solution of (6)-(8).
We have:

exp{—p? [y b(£)d¢}
2= ep? + exp{—p? [, b(€)de}

We can verify directly that «® € W. Moreover, one has

—p*b(t) exp{—p* J; b( §det
ep?* + exp{—p? [ b( df}
= —p?b(t) < u(x,t),sinpzr >
=b(t) < us,(z,1),sin(pz).

u(z,t) =

gp sin(pz). (15)

< ug(z,t),sin(pr) > =

This implies that
ug = b(t)u

xrx

exp{—p? [y b(&)d¢}
- T ep?* + exp{—p fo df}

So u€ is the solution of (6)—(8).

Part B. The Problem (6)-(8) has at most one solution C([0,T]; H}(0,7)) N
CH(0,T); L2(0, 7).
Proof.
We can prove this Theorem by similar way in Step 1 of Theorem 2.2.
Since Part A and Part B, we complete the proof of Step 1.
Step 2. The solution of the problem (6) — (8) depends continuously on g in L?(0, 7).
Let w and v be two solutions of (6) — (8) corresponding to the final values g and h.
From we have

u(z,T) =

psin(px).

exp{—p? [, b(€)de}

u(z,t) = 2 €p2k+exp{ . fo dg} 'n(px), (16)
= exp{—p’ [y b(€)de} .
) , 7
v(x,t) = 2 o+ explp fO d{} psin(px) (17)
where
g = i/oﬁg(fv) sin(pr)da,
hy = 727/0 h(zx) sin(px)dz.
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This follows that

2
i exp{— prt df}
u) = el = 53 : (99— hy)
) 2
T exp{—Bitp*}
< I —h
~ 2}; epzk—l—exp{—BQsz}(gp p) ’
2
e AN
T k Bit (BQT)k ? 2
< 7| (kBomyremT (ln( ) ;lgp—hﬂ
Byt
2Byt B —2k( 7ﬁ)
B <1n<3>) " g -l (18)
€
where
ByT)k
5, = BIL (19)
By = (kByT)". (20)
Hence

€

Byt By \ F-mr
u(oyt) — v(.,1) < ByeBoT <1n(3)> g —h

This completes the proof of Step 2 and the proof of our theorem.
Theorem 3.2 Let g(x) € L?(0,7) be the function satisfies the following condition

o0
4k 2T Bop? 2
> " pheT P g2 < oo,

where g, = 2 [ g(z) sin(pz)dz. Then u(z,T) converges to g(x) in L?(0,m) with

order (ln(%)) " as ¢ tends to zero.

Proof. -
We have g(x) = ) gpsin(pz), where g, is defined in (9). Let o > 0. Then there
p=1
o0
exists a positive integer number N for which § 3~ gg < /2. We have
p=N+1

00 2,4k 2

lu(2,T) — g@)P == P (21)
2= (ep2k+exp{ —p2 [ b df})
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Then since
2k 2 4 2 €2 4k: g
(ep + exp{—p / b(g)dg}) > + exp{—2p? / b(§)dE}
0 0
> 62p4k te —2T Bop?
S ¢ 2TBap? ’
we get
(g T 2 < 4k 2 2T Bap®?
[u (2, T) = g(a)||* < € Zp +5

—1
=z
By taking e such that € < /« <7r > p4k 22T Bap” ) , we get

lu(z,T) = g(2)|* <

We end the proof.
By using the inequality

—k
1 < (KTBa)ke! <1n((BQT)k)>

exk + e BTz —

we have the error estimate

) 2 4k 2
T €pg
Ju(2,T) — g(x)|* = 5 £

2
i1 (e + exp{—p? J} b()dc})”
P 62p4kgf)

§p:1 (€p2k+e—Tsz2)2

—2k o0
T 2p2 —2 (Bs) Z Ak 2
56 B46 <ln(€) P

2 Bs _QkW - a4k 2
= Bj (111(6)) 5227 9p-

p=1

IN

IN

This implies that

(&, T) — g(a)] < Bs (ln<>)k
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This ends the proof.
Theorem 3.3
Let g € L*(0,7) be as Theorem 3.2. If u¢(x,0) converges in L?(0,), then the prob-
lem (1)-(3) has a unique solution w. Furthermore, the regularized solution uc(x,t)
converges to u(t) as € tends to zero uniformly in t.
Proof. Assume that lg% u(x,0) = up(x) exists. Let

00 t

) = S esp{=p?* [ be)dchuoysin(pa)
p=1

where ug, = %fow uo(z) sin(pzx)dx.
It is clear to see that u(z,t) satisfies (1)-(2). We have the formula of u¢(z,t)

%0 t
u(,t) = 3 exp{—p? /0 b(€)de Y, sin(pe)
p=1
where uf, = 2 [T uc(z,0) sin(pz)da.

We have in view of the inequality (a + b)? < 2(a? + b?)

et = a0 < 53 e (20 [ o9 ) uy — 0)?
< (. 0) — w1

Hence lig(l)ue(a:,t) = u(x,t). Thus lii%ue(:c,T) = u(x,T). Using the theorem 2.2,
we have u(z,T) = g(z). Hence, u(z,t) is the unique solution of the problem (1)-(3).
We also see that u(x,t) converges to u(z,t) uniformly in ¢.

Theorem 3.4

Let f € L*(0,T;L%*(0,m)) and g € L?(0,7) . Suppose Problem (1)-(3) has a
unique solution u(z,t) in C([0,T]; H}(0,7)) N CL((0,T); L*(0,m)) which satisfies

o0
> p*Fu2(t) < co. Then
p=1

u(.,t) —uf(,t) < C <1n(B3)> -

€

o0
for every t € [0,T], where C = By, |5 sup Y p*u(t) and u® is the unique solu-
tel0,T] p=1

tion of Problem (6)-(8).
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Proof

Suppose the Problem (1)-(3) has an exact solution u € C([0, T]; H} (0, 7))NC((0,T); L?(0, 7)),
we get the following formula

(e ¢}

ooty =3 [ow (17 [ bie1de) ] sinto) (22

p=1

Since (10) and (20), we get
|up(t) — up ()] =
T ex 2 [T

ep? + exp{—p fo df}]
I G G df)
ep?* + exp{—p? [ b( dﬁ}

1 5 [T )
b(&)d
Gp% + exp{—p fo P (p /t (§)d¢ 9p

T
p?* exp <p2 /t b(&)d5> %

= Ep

IA

€

epk + e~ B2Tp?

This follows that

Hence

where C' = By, [§ sup Z pHeud(t).
tG[O T] p=

This completes the proof of Theorem.
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Theorem 3.5 Let f, g, e be as in Theorem 3.4. Assume that the exact solution u of
[e.9]

(1)—(3) corresponding to g satisfies u € W and ) p4kug(t) < o00. Let g. € L*(0,7)
p=1

be a measured data such that g. — g < €. Then there exists a function v¢satisfying

u(t) — v 1) < | O+ (elnk(B3)>§21% <1n(B3)> —k

€ €

for every t € [0,T] and C is defined in theorem 3.4.

Proof

Let u¢ be the solution of problem (6)-(8) corresponding to g and let v¢ be the
solution of problem (6)-(8) corresponding to g. where g, g. are in right hand side of
(6). Using Theorem 3.4 and Step 2 of theorem 3.1, we get

ve(,t) —ul,t) < v(,t) —us(.,t) +u(.,t) —ul(.,t)

By —k(1-gir) —k
< emie <1n(B3)> gg—g+c(1n<33>)
€

B\ 2

BoT

(elnk(3)> ’
€

for every ¢t € (0,7") and where C' is defined in Theorem 3.4
This completed the proof of Theorem.

N
N
El
-
=

=
Q
+

4. IMPROVED ESTIMATES WITH HOLDER TYPE

oo
In Section 3, Theorem 3.4, with the condition Y. p**u2(t) < oo, we establish
p=1

the error between the exact solution and regularized solution which is of logarithmic
order. The convergence rates here are very slow. To get a stability estimate of
Holder type for the whole [0; 7], we introduce a new regularized problem, which is
given by
u; — b(t)ug, =0, (2,t) € (0,m) x (0,7)
u(0,t) = u(m,t) =0,t € (0,7)

o exp{=p? [T b(&)de — mp?}
€ T =
u(z, T) =32 ep?* + exp{—p? foT b(€)dE — mp2}9p

where m > 0 is a fixed number and 0 < € < 1. If m = 0 then the problem (23) is
also the problem (13) which introduced in Section 3. The (unique) solution u¢ of

(23)

sin(pz),z € (0,7)
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(23) satisfies the following equality

) = S o o bE)dE —mp?)

gpsin(pz), 0<t<T. (24)
= ep + exp{—p? [; b(€)dE — mp?}

Let v be the solution of (23) corresponding to the measured data g¢. Then we also
have

v¥(x,t) = fj exp{—p® J, b()d¢ — mp?}

g in(pzr), 0<t<T. (25)
2= ep? + exp{—p? [y b(€)dE —mp2} "

where g, = % fow 9¢(x) sin prdz. The main purpose of this section is of considering
the error |[v¢(.,t) —u(.,t)|.

We have the following theorem

Theorem 4.1

Let f € L*(0,T;L?*(0,7)) and g € L?(0,7). Suppose Problem (1)-(3) has a unique
solution u(z,t) in C([0,T]; Hi(0,7)) N C*((0,T); L*(0,7)) which satisfies

ZpA‘k 2mp*y2(0) < oo, (26)
where u, (0 fo u(x,0)sinpxdx. Then the following estimate is holds
Byt+m D(m, k) k<1};l;++m _1)
u(.,t) —v(.,t) < E(m, k)eB2T+m <ln( i )> ’ . (27)
€

for every t € [0,T], where

C(m,k) = (kByT + km)*
(BT + m)F

D(m,k) = -

E(m,k) = C(m,k:)( ip‘lkeQmpzug(O)—i—l).
p=1

Remark.
1. If m =0, then error u(.,t) —v°(.,t) is of order

€

(o (m(D(O’ k>)>k<§"’% ) .
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—k
Let t = 0 then u(.,0) —v¢(.,0) is of order (ln(D(S’k))> , which is the same order
as one tn Theorem 3.4.

m k| 57— —1
2.The error (27) is of order eB2T+m (hl(M)) (BQTer ) forallt € [0,T]. As

€

we know, the convergence rate of e B2T+m s faster than that of the logarithmic order

<ln(D(T’k))>k(B2T+m 1 which is introduced in Section 3. To our knowledge, this
seems to be the optimal error order for backward heat. This is a strong point of this
method.

Proof.
Step 1. We estimate [|uc(.,t) — u(.,t)||. We have

up(t) — up(t) =

= e (2 [ _exp{=p” fy b(E)dE — mp?)
_ [ p<p / b(&)dg) o T |

L e () eede)
~ Y ot exp{—p? Jo b(&)de — mp2}gp
e (PP ) o)
~ Pt exp{p? Ji be)de — mp?} "
Since < u(zx,t), \/gsinp:c >= exp <p2 ftT b({)dﬁ) gp, We get
2 T
up(0) = — < u(z,0),sin pr >= exp <p2/ b(g)dﬁ) Ips
T 0
Or
T
gp = exp <—p2/ b(f)d§> up(0). (29)
0

Combining (28) and (29), we obtain

exp (—p? fy b(€)dg)
ep? + exp{—p2 [ b(E)de — mp?} ”
exp (—p2 Jy b(&)de — mp2>

= e ) 1, (0). (30
ep EP%HXp{pzfoTb@dgmp2}exp(mp)up() (30)

up(t) —up(t) = ep™
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On the other hand, we note that

exp (9 YOde—m?) By
ep? + exp{—p? [ b(E)dE —mp2} T ep*h + e (BT

Bqt+m _ B T
< (kBoT + km)keleT+m 1 (m((z;—m))
€

For a short, we denote

C(m,k) = (kBoT + km)*

k
D(m, k) M
k
Then (31) can be rewritten as follows
exp (—p2 Jy b(&)de — mpz) Byim ( D(m, k) k(?;%iﬁ—l)
: < Clm, TR (1P ) |
ep®* + exp{—p? [ b(£)d§ — mp?} ¢

It follows from (30) and (32), we get
H'LL(, t) - U'E('? t) H2
=D lup(t) —up()]?
p=1

Bit+m

< 2C*(m, k:)62 BT Hm <ln(

Z p*F exp (2mp2) uf,(O)
p=1

€

D(m, k) )) 2’6(521%172 *1>

Bit+m _

Byt+m 2k ByrFm 1) &
< CQ(m, k)eQleT“n <ln(D(m’ k))> ( 2 ) Zp‘lkezmﬁuZ(O).
p=1

€

Therefore

[ul., 1) —u(, D)

Bit+m

Bit+m k w1 ©
< C(m’ k)EBQIT+m (hl(D(m’ k) )> <32T+BQ ) \J Zp4k62mp2u[2)(0). (33)
p=1
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Step 2. We estimate the term |[v€(.,¢) — u®(.,?)||. Indeed, we have

e () —u (L) = i( exp{=p? Jy HE)dt = i’} )2(92—97))2

2= Nep? + exp{—p? [} b(€)dE —mp?}
oo B1t+m)

2 2
(6p2k+e (B2T+m)p? ) (gp*gp> :

IN

p=1

Using (32) we obtain

Il (. 8) = u (., )

2 el AN GUL)) N
S C (m,k)e 2T+ ln( - ) ; (gp gp)
Bit+m
Bit+m D k‘ 2k m_l
< Cg(mak’)szgT“" 2 <ln((m’))> ( 2 )HQE—QHQ
€
Bit+m
Dytdm D 2k sl —1
S 02(m, k)€2521T+7n 2 <ln((7,n7]€))> ( 2 >62
€

= C*(m, k)e B2T+m

B m
28y r42m (m (D(m,k))>2’“(33ﬁm1) |

Hence
105 ) — u(, )| < C(m, k)eParn (m(D(TZ’k)))k(m_l) . (34)
Combining (33) and (34), we obtain
Ju(,t) —u(, O < v 8) —u (0l + lu (1) —ul, D
< Gl B (lngw))’“(?%m ) (S emeigor 1)
€

p=1
5.CONCLUSION

We have considered a regularization problem for an initial inverse heat equation
with time-dependent coefficient, namely Problem (1). We also establish the error
estimate of H”older type for all ¢ € [0,T]. This estimate improves the results in
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many earlier works. In the future work, we will consider the regularized problem for
the following problem

% = %(b(m,t)%), (z,t) € (0,7) x (0,T)
u(0,t) = u(m,t) =0,t € (0,T) (35)

u(z,T) = g(x), (x,t) € (0,7) x (0,T)

where b(z,t) is a function dependent on both variables z, t.
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