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QUASI-REDUCED RINGS

H. Kose, B. Ungor, S. Halicioglu and A. Harmanci

Abstract. Let R be an arbitrary ring with identity. In this paper, we intro-
duce quasi-reduced rings as a generalization of reduced rings and investigate their
properties. The ring R is called quasi-reduced if for any a, b ∈ R, ab = 0 implies
(aR) ∩ (Rb) is contained in the center of R. We prove that some results of reduced
rings can be extended to quasi-reduced rings for this general settings.

2010 Mathematics Subject Classification: 13C99, 16D80, 16U80.

1. Introduction

Throughout this paper all rings are associative with identity unless otherwise
stated. A ring is reduced if it has no nonzero nilpotent elements. A ring R is
called semicommutative if for any a, b ∈ R, ab = 0 implies aRb = 0. Recently a
generalization of semicommutative rings is given in [1]. A ring R is called central
semicommutative if for any a, b ∈ R, ab = 0 implies arb is a central element of R
for each r ∈ R. A ring R is called right (left) principally quasi-Baer [3] if the right
(left) annihilator of a principal right (left) ideal of R is generated by an idempo-
tent. Finally, a ring R is called right (left) principally projective if the right (left)
annihilator of an element of R is generated by an idempotent [2].

In this paper, we introduce quasi-reduced rings. This class of rings generalizes
reduced rings. Since every reduced ring is quasi-reduced, we investigate sufficient
conditions for quasi-reduced rings to be reduced. We show that some results of
reduced rings can be extended to quasi-reduced rings for this general settings. We
give some examples to show that all quasi-reduced rings need not be reduced. Among
others we prove that quasi-reduced rings are abelian and there exists an abelian ring
which is not quasi-reduced. Therefore the class of quasi-reduced rings lies strictly
between the classes of reduced rings and abelian rings. It is shown that every
quasi-reduced ring is weakly semicommutative, central semicommutative, 2-primal,
abelian and so directly finite. We prove that a ring R is quasi-reduced if and only if
the Dorroh extension of R is quasi-reduced. We show that Köthe’s conjecture holds
for the class of quasi-reduced rings.
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Throughout this paper, let Z be the ring of integers, and for a positive integer
n, Zn and Z2×2 denote the ring of integers modulo n and the ring of 2× 2 matrices
over Z, respectively. We write R[x] and R[x, x−1] for the polynomial ring and the
Laurent polynomial ring over R, respectively.

2. Quasi-Reduced Rings

According to Lee and Zhou [8], a ring R is called reduced if for any a, b ∈ R,
ab = 0 implies (aR) ∩ (Rb) = 0. In the context, a reduced ring is known as to be a
ring with no nonzero nilpotent elements. Actually, for a ring R, for any a, b ∈ R,
ab = 0 implies (aR) ∩ (Rb) = 0 if and only if R does not contain nonzero nilpotents
if and only if for any a ∈ R, a2 = 0 implies a = 0. However if the ring R does not
have an identity these reduced concepts are not equivalent as the following example
shows.

Example 2.1 Consider the subring R (without unit) of the ring of 2× 2 matrices

over Z2 of the form

[
a b
a b

]
(see [6, Ex. 1.10]). The ring R is noncommutative.[

1 1
1 1

]
is a nonzero nilpotent element of R. Let

[
a b
a b

]
,

[
c d
c d

]
∈ R with[

a b
a b

] [
c d
c d

]
= 0. Then (a + b)c = 0 and (a + b)d = 0. Two cases arise here.

a + b = 0 or a + b 6= 0. If a + b = 0, then a = b = 0 or a = b = 1. These cases

imply

[
a b
a b

]
R ∩ R

[
c d
c d

]
= 0. Assume a + b 6= 0. Then c = d = 0. Hence[

a b
a b

]
R ∩R

[
c d
c d

]
= 0.

Now, we give the definition of quasi-reduced rings.

Definition 2.2 The ring R is called quasi-reduced if for any a, b ∈ R, ab = 0 implies
(aR) ∩ (Rb) is contained in the center of R.

Commutative rings and reduced rings are quasi-reduced. One may suspect that
quasi-reduced rings are reduced. But the following example erases the possibility.

Example 2.3 Consider the ring R = Z[x]/(x2). Then R is a commutative ring and
so R is quasi-reduced. If a = x + (x2) ∈ R, then a2 = 0. Therefore R is not a
reduced ring.

In general, one may prove that every subring of a quasi-reduced ring is quasi-
reduced and any finite direct sum of quasi-reduced rings is quasi-reduced.
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Lemma 2.4 Let R be a ring.

(1) If R is a quasi-reduced ring, then for a ∈ R, a2 = 0 implies a is central. The
converse holds if R is a semiprime ring.

(2) If R is a quasi-reduced ring, then it is abelian, i.e. any idempotent of R is
central.

Proof. (1) Assume that R is a quasi-reduced ring. Let a ∈ R with a2 = 0. Then
(aR)∩ (Ra) is central. Since a ∈ (aR)∩ (Ra), a is central. Conversely, assume that
R is a semiprime ring and whenever a2 = 0 implies a is central. Let a, b ∈ R with
ab = 0. Then ba, bra and arb are central for r ∈ R. Let at = sb ∈ (aR) ∩ (Rb)
where t, s ∈ R. Then ata = sba and (ata)2 = (sba)2 = sbasba = sbabas = 0. Hence
ata = sba is central and so ata2 = sbaa = asba = abas = 0. On the other hand,
atat = tata and atata = tata2 = 0. It follows that (at)3 = 0. Hence (at)2 is central.
Then ((at)2R)2 = 0. Hence (at)2 = 0. By assumption, at is central. Therefore R is
quasi-reduced.

(2) Let e be an idempotent in R. By (1), (er− ere)2 = 0 implies er− ere central
for all r ∈ R. Commuting er− ere by e we have er = ere. Similarly, (re− ere)2 = 0
implies re = ere for all r ∈ R. Hence e is central. �

Corollary 2.5 Let R be a quasi-reduced ring and a, b ∈ R with ab = 0. Then the
element ba of R is central.

The following example shows that the converse of Lemma 2.4(2) need not be
true in general.

Example 2.6 Consider the ring

R =

{[
a b
c d

]
∈ Z2×2 | a ≡ d (mod 2), b ≡ c ≡ 0 (mod 2)

}
.

Since only idempotents of R are identity and zero matrices, R is abelian. If A =[
0 2
0 0

]
∈ R, then A2 = 0 but A is not central. Therefore R is not quasi-reduced

by Lemma 2.4(1).

Theorem 2.7 Let R be a ring. If every nilpotent element of R is central, then it is
quasi-reduced. The converse holds if R is semiprime.
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Proof. Let a, b ∈ R with ab = 0. Then (ba)2 = 0 implies ba is central in R. Let
x = aa1 = b1b ∈ (aR) ∩ (Rb), where a1, b1 ∈ R. Then x3 = b1bb1bb1b = b1bb1baa1 =
b1babb1a1 = 0. By hypothesis, x is central. Hence R is quasi-reduced. For the
converse assume that R is semiprime and quasi-reduced. Let a ∈ R with an = 0 for
some positive integer n. By Lemma 2.4, we may suppose n ≥ 3. Then (an−1)2 = 0
and so an−1 is central. Hence an−1Ran−1 = 0. Being R semiprime we have an−1 = 0.
So in the same way we may induce to the case a2 = 0. By Lemma 2.4(1), a is central.
�

In Theorem 2.7 being R a semiprime ring is not superfluous. However we should
find an example to establish this claim for rings with identity. But we are not able
to find an example for rings with identity. For rings with no identity the following
example establishes the claim.

Example 2.8 Consider the ring R as in Example 2.1 and let a =

[
1 1
1 1

]
. Then

R is quasi-reduced. On the other hand, it is not semiprime since Ra is a nonzero
nilpotent left ideal. Also, the element a is nilpotent which is not central in R.

Recall that a ring R is said to have nilpotency index if there is a positive integer
n such that an = 0 for all nilpotent elements a ∈ R. Then we have the following
result by Lemma 2.4(1) and Theorem 2.7.

Corollary 2.9 Let R be a ring with the nilpotency index 2. Then the following are
equivalent.

(1) R is quasi-reduced.

(2) Every nilpotent element of R is central.

Proposition 2.10 If R is a reduced ring, then R is quasi-reduced. The converse
holds if R satisfies any of the following conditions.

(1) R is a semiprime ring.

(2) R is a right (left) principally projective ring.

(3) R is a right (left) principally quasi-Baer ring.

Proof. First statement is clear. Conversely, assume that R is a quasi-reduced ring
and a ∈ R with a2 = 0. By Lemma 2.4(1), a is central. Now consider the following
cases.
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(1) Let R be a semiprime ring. Since a is central, axa = 0 for all x ∈ R. It
follows that a = 0. Therefore R is reduced.

(2) Assume R is a right principally projective ring. Then there exists an idem-
potent e ∈ R such that rR(a) = eR. Thus a = ea = ae = 0, and so R is reduced. A
similar proof may be given for left principally projective rings.

(3) Same as the proof of (2). �

Corollary 2.11 If R is a quasi-reduced ring, then the following conditions are equiv-
alent.

(1) R is a right principally projective ring.

(2) R is a left principally projective ring.

(3) R is a right principally quasi-Baer ring.

(4) R is a left principally quasi-Baer ring.

Proof. It follows from Proposition 2.10 since in either case R is reduced. �

Note that the homomorphic image of a quasi-reduced ring need not be quasi-
reduced. Consider the following example.

Example 2.12 Let D be a division ring, R = D < x, y > and I =< x2 > where
xy 6= yx. Since R is a domain, it is quasi-reduced. On the other hand, x2 = 0 but x
is not a central element of R/I. Then R/I is not quasi-reduced by Lemma 2.4(1).

Proposition 2.13 Let R be a ring. Then the following are equivalent.

(1) R is a domain.

(2) R is prime and reduced.

(3) R is prime and quasi-reduced.

Proof. (1)⇒ (2)⇒ (3) Clear.
(3)⇒ (1) Let a, b ∈ R with ab = 0. Then abr = 0 for all r ∈ R, and by Corollary

2.5, bRa is contained in the center of R. Hence we have (asb)R(asb) = 0 for any
s ∈ R. Since R is prime, asb = 0 for any s ∈ R and so aRb = 0. This implies that
a = 0 or b = 0. Therefore R is a domain. �

Let P (R) denote the prime radical and N(R) the set of all nilpotent elements of
the ring R. The ring R is called 2-primal if P (R) = N(R) (see namely [4] and [5]).
Lemma 2.14 is well known and easy to prove.
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Lemma 2.14 Let R be a ring. Then we have the following.

(1) If R is 2-primal and semiprime, then it is reduced.

(2) If R is semicommutative and semiprime, then it is reduced.

In [11, Theorem 1.5] it is proved that every semicommutative ring is 2-primal.
In this direction we prove the next result.

Theorem 2.15 Every quasi-reduced ring is 2-primal. The converse holds for semiprime
rings.

Proof. It is well known that P (R) ≤ N(R). Let a ∈ R and an = 0 for some integer
n ≥ 2. For any r1 ∈ R, ar1a

n−1 ∈ (aR) ∩ (Ran−1) is central. Commuting ar1a
n−1

with ar2 for any r2 ∈ R, we have

ar2ar1a
n−1 = ar1a

n−1ar2 = 0.

By hypothesis, for any s1 ∈ R, ar2ar1as1a
n−2 is central. Commuting ar2ar1as1a

n−2

with ar3 for any r3 ∈ R, we have

ar3ar2ar1as1a
n−2 = ar2ar1as1a

n−2ar3 = 0.

By hypothesis, for any s2 ∈ R, ar3ar2ar1as1as2a
n−3 is central. Commuting it with

ar4 for any r4 ∈ R, we have

ar4ar3ar2ar1as1as2a
n−3 = ar3ar2ar1as1as2a

n−3ar4 = 0.

By hypothesis, for any s3 ∈ R, ar4ar3ar2ar1as1as2as3a
n−4 is central. Commuting

it by ar5 for any r5 ∈ R, we have

ar5ar4ar3ar2ar1as1as2as3a
n−4 = ar4ar3ar2ar1as1as2as3a

n−4ar5 = 0.

There exists a positive integer t depending on n such that ax1ax2ax3...axta = 0
for all xi ∈ R, where (i = 1, 2, 3, ..., t). Then for any prime ideal P , we have
aR(ax2ax3...axta) ≤ P . So a ∈ P or ax2ax3...axta ∈ P for all x2, ..., xt. If
aRax3...axta ≤ P , then a ∈ R or ax3...axta ∈ P for all x3, ..., xt. Continuing in this
way we reach a ∈ P for all prime ideals P . Thus a ∈ P (R) and so N(R) = P (R).
Conversely, let R be a semiprime and 2-primal ring. Then R is reduced by Lemma
2.14 and so quasi-reduced. �
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Corollary 2.16 Let R be a quasi-reduced ring. Then the ring R/P (R) is reduced.

Proof. Clear by Theorem 2.15 since P (R) consists of all nilpotent elements. �

Theorem 2.17 Every quasi-reduced ring is central semicommutative. The converse
holds for semiprime rings.

Proof. Let R be a quasi-reduced ring and a, b ∈ R with ab = 0. Then (aR)∩ (Rb) is
contained in the center of R. Since aRb ≤ (aR)∩(Rb), R is central semicommutative.
The converse is clear from the fact that every semiprime central semicommutative
ring is reduced by Lemma 2.14. �

The Köthe’s conjecture states that if R has no nonzero nil ideals, then R has no
nonzero nil one-sided ideals (see for detail [12]).

Corollary 2.18 Köthe’s conjecture holds for a quasi-reduced ring.

The converse statement of Theorem 2.17 need not hold in general.

Example 2.19 Let F be a field and consider the subring

R =



a b c d
0 a b e
0 0 a b
0 0 0 a

 | a, b, c, d, e ∈ F
 of the ring of all 4×4 matrices over F . We

show that R is central semicommutative but not quasi-reduced. Let A, B ∈ R with
AB = 0. Then we have the following cases:

(1) A = 0 or B = 0 or

(2) A =


0 b c d
0 0 b e
0 0 0 b
0 0 0 0

 and B =


0 0 c′ d′

0 0 0 0
0 0 0 0
0 0 0 0

 or

(3) A =


0 0 0 d
0 0 0 e
0 0 0 0
0 0 0 0

 and B =


0 b′ c′ d′

0 0 b′ e′

0 0 0 b′

0 0 0 0

 or

(4) A =


0 0 c d
0 0 0 e
0 0 0 0
0 0 0 0

 and B =


0 0 c′ d′

0 0 0 e′

0 0 0 0
0 0 0 0

.
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In either case we have ARB = 0. Hence R is semicommutative.

For A =


0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

 and B =


0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

, AR ∩ RB = RB which is

not central. Hence R is not quasi-reduced.

Recall that a ring R is called weakly semicommutative [9] if for any a, b ∈ R,
ab = 0 implies arb is a nilpotent element for each r ∈ R.

Proposition 2.20 Let R be a quasi-reduced ring. Then R is weakly semicommuta-
tive.

Proof. Let a, b ∈ R with ab = 0. Since R is quasi-reduced, by Corollary 2.5, ba is
central in R. Hence for each r ∈ R, (arb)2 = arbarb = ar2bab = 0. Therefore R is a
weakly semicommutative ring. �

The following example shows that there is a weakly semicommutative ring which
is not quasi-reduced.

Example 2.21 Let D be a division ring and consider the 2 × 2 upper triangular

matrix ring R =

[
D D
0 D

]
. In [9], it is proved that R is weakly semicommutative.

Now consider the element a =

[
0 1
0 0

]
of R. Then a2 = 0 and it is clear that a is

not central. Hence R is not quasi-reduced by Lemma 2.4(1).

The next example shows that for a ring R and an ideal I, if R/I is quasi-reduced,
then R need not be quasi-reduced.

Example 2.22 Let F be a field and consider the 2 × 2 upper triangular matrix

ring R =

[
F F
0 F

]
. Then R is not quasi-reduced by the preceding example. Now

consider the ideal I =

[
F F
0 0

]
of R. Then R/I is quasi-reduced because the ring

R/I is commutative.

Proposition 2.23 Let R be a prime ring. If R/I is a quasi-reduced ring with a
reduced ideal I, then R is reduced and therefore quasi-reduced.
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Proof. Let R/I be a quasi-reduced ring. By Theorem 2.17, R/I is central semicom-
mutative. Let a ∈ R with a2 = 0. Then (a+I)2 = 0 ∈ R/I, and so (a+I)(R/I)(a+I)
is contained in the center of R/I. Hence (a + I)(R/I)(a + I)(R/I)(a + I) = 0, so
we have aRaRa ⊆ I. Let r, s ∈ R. Since (arasa)2 = 0 and I is reduced, arasa = 0.
Then aRaRa = 0. By hypothesis a = 0, therefore R is reduced. �

Recall that a ring R is called directly finite whenever a, b ∈ R, ab = 1 implies
ba = 1. Then we have the following.

Corollary 2.24 If R is a quasi-reduced ring, then R is directly finite.

Proof. By Lemma 2.4(2), R is an abelian ring and so directly finite. �

Recall that a ring R is von Neumann regular if for each a ∈ R, there exists b ∈ R
with aba = a, while R is strongly regular if for each a ∈ R, there exists b ∈ R with
a2b = a. Every strongly regular ring is von Neumann regular.

Theorem 2.25 The following are equivalent for a ring R.

(1) R is strongly regular.

(2) Every right R-module is flat and R is quasi-reduced.

(3) Every cyclic right R-module is flat and R is quasi-reduced.

(4) R is regular and quasi-reduced.

(5) R is regular and reduced.

(6) R is regular and abelian.

Proof. (1) ⇒ (2) Note that every strongly regular ring is von Neumann regular,
by Harada’s theorem, every module is flat. Being R strongly regular, it does not
contain nonzero nilpotent elements. For a, b ∈ R assume that ab = 0. Then ba = 0.
Let ar = tb ∈ (aR)∩ (Rb). Multiplying ar = tb by ar we have (ar)2 = 0. So ar = 0.
Hence (aR) ∩ (Rb) = 0.

(2) ⇒ (3) Obvious. (3) ⇒ (4) Clear by [7, Theorem 4.21].
(4) ⇒ (1) Let a ∈ R. Then a = aba for some b ∈ R and so ab is an idempotent.

By Lemma 2.4, it is central. Hence a = aba = a2b. The rest is clear. �

Let R be a ring and the Dorroh extension D(R,Z) of R is a ring with compo-
nentwise addition and multiplication defined by

(r1, n1)(r2, n2) = (r1r2 + r1n2 + r2n1, n1n2)
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where ri ∈ R, ni ∈ Z for i = 1, 2. It is well known that if R is a reduced ring, then
its Dorroh extension has the 2-primal condition ([10]). In this direction we prove
the following.

Proposition 2.26 Let R be a quasi-reduced ring. Then D(R,Z) is also quasi-
reduced.

Proof. Let (r1, n1), (r2, n2) ∈ D(R,Z) with (r1, n1)(r2, n2) = (r1r2 + r1n2 +
r2n1, n1n2) = 0. Then n1n2 = 0 and r1r2 + r1n2 + r2n1 = 0. We divide the
proof in two cases: n1 = 0 and n2 6= 0 or n1 6= 0 and n2 = 0. We prove only for
the case n1 = 0 and n2 6= 0. Then r1r2 + r1n2 = 0. Since R has identity, r2 + n2
is an element of R and so r1(r2 + n2) = 0. By hypothesis (r1R) ∩ (R(r2 + n2))
is central. Let (r1, 0)(a, n) = (b,m)(r2, n2) ∈ ((r1, 0)D(R,Z)) ∩ (D(R,Z)(r2, n2)).
Then m = 0 and r1(a + n) = b(r2 + n2) ∈ (r1R) ∩ (R(r2 + n2)) is central. Hence
((r1, 0)D(R,Z)) ∩ (D(R,Z)(r2, n2)) is central in this case. The proof for the case
n1 6= 0 and n2 = 0 is similar. �

Let S denote a multiplicatively closed subset of R consisting of central regular
elements. Let S−1R be the localization of R at S. Then

Proposition 2.27 R is quasi-reduced if and only if so is S−1R.

Proof. Note that r/s ∈ S−1R is central in S−1R if and only if r is central in R.
Assume that R is a quasi-reduced ring and let a/s, b/t ∈ S−1R, where s, t ∈ S, and
(a/s)(b/t) = 0. Since all elements of S are central regular, ab = 0. By assumption
(aR) ∩ (Rb) is contained in the center of R. Let (a/s)(a1/s1) = (b1/t1)(b/t) ∈
((a/s)S−1R) ∩ (S−1R)(b/t). Then tt1aa1 = ss1b1b and, since t, t1, s, s1 are central,
tt1aa1 = ss1b1b ∈ (aR)∩(Rb) and it is central. By dividing tt1aa1 = ss1b1b by tt1ss1,
(a/s)(a1/s1) = (b1/t1)(b/t) is a central element of ((a/s)(S−1R)) ∩ ((S−1R)(b/t)).
The converse is clear since R may be embedded in S−1R as a subring and quasi-
reducedness is preserved under subrings. �

Corollary 2.28 For any ring R, the polynomial ring R[x] is quasi-reduced if and
only if the Laurent polynomial ring R[x, x−1] is quasi-reduced.

Proof. Let S = {1, x, x2, x3, x4, ...}. Then S is a multiplicatively closed subset of
R[x] consisting of central regular elements. Then the proof follows from Proposition
2.27. �

Let R be a ring and M be an (R,R)-bimodule. Recall that the trivial extension
of R by M is defined to be ring T (R,M) = R⊕M with the usual addition and the
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multiplication (r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This ring is isomorphic to

the ring

{[
r m
0 r

]
: r ∈ R,m ∈M

}
with the usual matrix operations. The trivial

extension of R by M need not be a quasi-reduced ring, as the following example
shows.

Example 2.29 Let R be a noncommutative ring and r a noncentral element in R.

Consider the element

[
0 r
0 0

]
of T (R,R). Then

[
0 r
0 0

]2
=

[
0 0
0 0

]
. Let a ∈ R

with ar 6= ra. Then we have

[
a 0
0 a

] [
0 r
0 0

]
6=
[

0 r
0 0

] [
a 0
0 a

]
. By Lemma

2.4(1), T (R,R) is not quasi-reduced.
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