Acta Universitatis Apulensis No. 34/2013
ISSN: 1582-5329 pp- 335-354

A DESIGN PATTERNS PERSPECTIVE ON DATA STRUCTURES

VIRGINIA NICULESCU

ABSTRACT. Design patterns may introduce a new perspective on the tradi-
tional subject of data structures. We analyze in this paper how design patterns
can be used for data structures implementation, and their advantages. The pre-
sentation is leaded by the design patterns classification: behavioral, structural and
creational, and we prove here that all classes of patterns could be successfully used
for data structures implementation. By using design patterns for data structures
construction we emphasize new perspectives on data structures: separation between
concepts and their representations, storage independence, reusability, and others.
These could bring important changes in the design of the new collections libraries
or frameworks. Examples that illustrate the impact of the design patterns in this
context are presented, too. This analysis shows that design patterns could bring
important advantages in basic fields of computer science, too.

2000 Mathematics Subject Classification: 68P05.

1 Introduction

Data structures (DS) represent an old issue in the Computer Science field [2, 4].
By introducing the concept of abstract data type, data structures could be defined in
a more accurate and formal way. A step forward has been done on this subject with
object oriented programming [2, 11]. Object oriented programming allow us to think
in a more abstract way about data structures. Based on OOP we may define not only
generic data structures by using polymorphism or templates, but also to separate
definitions from implementations of data structures by using interfaces [10, 11].

Design patterns may move the things forward, and introduce more flexibility and
reusability for data structures. In this paper we intend to present the how behav-
ioral, structural and creational design patterns could be used for implementing data
structures. The presentation is leaded by the design patterns and their classification
given in [1]. We prove here that all classes of design patterns could be successfully
used for data structures implementation.

335

V. Niculescu - A Design Patterns Perspective on Data Structures

By using design patterns in data structures construction we emphazise new per-
spectives on data structures: separation between concepts and their representations,
storage independence, reusability, and scalability. These could bring important
changes in the design of the new collections libraries or frameworks.

We also present some examples that illustrate the impact of design patterns on
the implementation of data structures, how they could increase the genericity and
flexibility.

2 Behavioral Design Patterns Used for DS Implementation

Behavioral patterns deal with encapsulating algorithms, and managing or dele-
gating responsibility among objects [1].

2.1 Tterator

Iterator design pattern [1] provides a way to access the elements of an aggregate
object sequentially without exposing its underlying representation.

The Iterator design pattern is maybe the first design pattern that has been used
for data structures. Its advantages are so important such that probably now there
is no data structures library that does not use it.

The key idea in this pattern is to take the responsibility for access and traversal
out of the container object and put it into an iterator object. An iterator object is
responsible for keeping track of the current element; it knows elements have been
traversed already. An iterator allows us to access an aggregate object’s content with-
out exposing its internal representation, but also support multiple traversals, and
provide uniform interface for traversing different containers (polymorphic iteration).

Iterator has many implementation variants and alternatives. Based on who con-
trol the iteration we may classify iterators as external iterator, when the client
controls the iteration, and internal iterators when the iterator controls it. If we
consider who defines the traversal algorithm, when the container defines it and use
the iterator to store just the state of the iteration, we have a cursor, since it merely
points to the current position in the container (a well known example is a list with
cursor).

The classical responsibility of an iterator is specified by the following opera-
tions: retrieving the current element, moving to the next element, and verifying the
existence of un-iterated elements; this corresponds to a read-only, one-directional
iterator. If also the previous element (relatively to the current) could be retrieved,
then the iterator is a bidirectional one, and if the elements could be retrieved ran-
domly then the iterator is a random-type iterator (such an iterator is usual for array
based representation of the container). Beside this kind of operations an iterator

336

V. Niculescu - A Design Patterns Perspective on Data Structures

could define removal and insertion operations; in this case we have read-and-write
iterators. Such an iterator is considered to be robust if ensures that insertions and
removals do not interfere with traversal, and it does it without copying the container.

An iterator and the container are tightly coupled, and the iterator can be viewed
as an extension of the container that created it.

2.2 Template Method

Template Method design pattern defines the skeleton of an algorithm in a class
operation, deferring some steps to subclasses. Template Method lets subclasses

redefine certain steps of an algorithm without changing the algorithm’s structure.
The classes and/or objects participating in this pattern are:
e AbstractClass - defines abstract primitive operations that concrete subclasses define
to implement steps of an algorithm;
- implements a template method defining the skeleton of an algorithm.
The template method calls primitive operations as well as operations defined in Ab-
stractClass or those of other objects.

e ConcreteClass implements the primitive operations to carry out subclass-specific

steps of the algorithm

The following example is closely related to iterators. Based on iterators, many
generic operations for containers can be defined. The example considers the ap-
plication of a specific operation to the elements of a container. For example, we
need to print the elements of a container, or we need to transform all the elements
of a container based on the same rule, etc. For implementing this, an abstract
class OperationOnStructure could be defined, as it is showed in the Figure 1. The
method applyOperation is the template method, and operation is the abstract
method that is defined in the subclasses. Using these classes it is possible to print
a list, or a binary tree, or to square the elements of an list of integers, etc.

This approach is good if all the objects have the same type since a cast operation
is done inside the concrete operations. When we have a non-homogeneous container,
and we want to apply different operations (depending on the concrete type of the
element) then Visitor design pattern is appropriate to be used.

Another interesting example of using Template Method pattern is related to the
implementation of different sorting methods, based on S. Merritt taxonomy [3]. At
the top of her sorting taxonomy is an abstract divide-and-conquer algorithm: split
the array to be sorted into two subarrays, (recursively) sort the subarrays, and join
the sorted subarrays to form a sorted array. This approach considers all comparison-
based algorithms as simply specializations of this abstraction and partitions them
into two groups based on the complexity of the split and join procedures: easy
split/hard join and hard split/easy join. At the top of the groups easy split/hard join
and hard split/easy join are merge sort and quick sort, respectively, and below them

337

V. Niculescu - A Design Patterns Perspective on Data Structures

<<|yte Mace ==

Cnemadio O Sruokoe it

-iter@tar

ope @donh C Qofedt, ag ;- Obgct
ApplyOperationiarg : Obje)

| Applyiitte ||| Applaint Sum | |[AListterstor | | ABinaryTree terator |

hashextr) : boole an
next’); Object

while ftergtorha stestC)
operatio nifterator.next’), arg’;

Figure 1: OperationOnStructure Template Method Class.

will fit all other well-known, more ”low-level” algorithms. For example, splitting off
only one element at each pass in merge sort results in insertion sort. Thus insertion
sort can be viewed as a special case of merge sort.

Sorting could be modeled as an abstract class with a template method to per-
form the sorting. This method delegates the splitting and joining of arrays to the
concrete subclasses, which use an abstract ordering strategy to perform comparisons
on objects [6].

2.3 Visitor

Visitor design pattern is used in order to represent an operation to be performed
on the elements of an object structure. Usually, it is used in order to aplly a certain
operation to all elements of a container. Visitor lets you define a new operation
without changing the classes of the elements on which it operates [1].

The classes and/or objects participating in this pattern are:

e Visitor declares a wisit operation for each class of ConcreteFElement in the object
structure. The operation’s name and signature identifies the class that sends the
Visit request to the visitor. That lets the visitor determine the concrete type of the
element being visited. Then the visitor can access the elements directly through its
particular interface.

e ConcreteVisitor implements each operation declared by Visitor. Each operation im-
plements a fragment of the algorithm defined for the corresponding class or object in
the structure. ConcreteVisitor provides the context for the algorithm and stores its
local state. This state often accumulates results during the traversal of the structure.

e FElement defines an accept operation that takes a visitor as an argument.

e ConcreteElement implements an accept operation that takes a visitor as an argument.

o ObjectStructure defines a visitable container and it can enumerate its elements; it
may provide a high-level interface to allow the visitor to visit its elements, and it may

338

V. Niculescu - A Design Patterns Perspective on Data Structures

interface Element {
public void accept (Visitor v) ;
}

abstract class ObjectStructure implements Container, Element{
public abstract void accept (Visitor v) {
Iterator it = getIterator(); //getIterator is abstract here
while (it.hasNext()){
Element vo = (Element)it.getElement();
vo.accept (v);
it.next();

Figure 2: Java interface - Element, and an abstract visitable agregate class.

either be a Composite (pattern) or a collection such as a list or a set.

Visitor design pattern could be successfully applied when we need to introduce
different operations on the non-homogeneous elements of a data structure.

In the Figure 2 we present the interfaces and an abstract class that could be
used in order to apply Visitor pattern for containers. A Visitor has to be defined
as an interface that contains different methods that correspond to different types
(types of the elements that will be stored in the container). Elements of a visitable
container should be also visitable (they have to implement the interface Element).
In a visitable element class, the operation accept calls the corresponding method of
Visitor, depending on the concrete type of that element.

2.4 Strategy

Strategy design pattern defines a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary independently from
clients that use it [1].

The classes and/or objects participating in this pattern are:

e Strategy declares an interface common to all supported algorithms. Context uses this
interface to call the algorithm defined by a ConcreteStrategy;
e (ConcreteStrategy implements the algorithm using the Strategy interface;
e (Context is configured with a ConcreteStrategy object, maintains a reference to a Strat-
egy object and may define an interface that lets Strategy access its data.
A good example is represented by the binary tree traversals. We may have
preorder, inorder and postorder traversal for binary trees. In this way we may
dynamically choose the traversal order for a binary tree (Figure 3). Encapsulating

339

V. Niculescu - A Design Patterns Perspective on Data Structures

BinanTee Traversa! BinaryTree
PreBinaryT ree InBinaryT ree FodBinaryTree
Trawersal Trawversal Traversal

Figure 3: A Strategy class for tree traversal.

SortedStructure <eIntarfacas r
: -eoamp Comparatar
2dd b th.'ec.t,] compare(argld ; Object, arg1 ; Object): int
bl GE D'e-'"ie':t'] equalsargd : Object) : boalean
seamhi o Oect) © hoolean

s T T 1

Sortedlist HAzcendint Des cendlnt StudentCegree
seamhPosi - Oiyedt) @it Comp Comp Comp

Figure 4: Using Comparator for implementing sorted lists with different comparison
criteria.

the algorithm in separate Strategy classes lets us vary the algorithm independently
of its context, making it easier to switch and understand.

2.5 Comparator

For sorted structures it is very important to allow different comparison criteria.
Also, defining a generic sorted structure means that we may construct sorted struc-
tures on different types of objects with different comparison operations (Figure 4).
Comparator design pattern could be seen as a special kind of Strategy design pattern,
since it specifies how two objects are compared.

Comparators are very common and they were introduced before using object
oriented programming for data structures implementation. Function parameters are
used in imperative programming in order to implement comparators. They are used
especially for sorted structures, and sorting algorithms.

This design pattern can be successfully used for priority queues, too.

An abstract class — PriorityQueueWithComparator — is defined, and this imple-
ments the priority queue interface, and aggragates the Comparator. In this way, the

340

V. Niculescu - A Design Patterns Perspective on Data Structures

priorities of the elements are not stored into the queue; we establish only an order
between elements, using a comparator.

2.6 State

An interesting implementation of containers using State design pattern is presented
in [5]. The key here is to encapsulate states as classes. A container class could
be considered as an abstraction defined by three methods: insert, remove, and
retrieve. Most implementations based on dynamic memory allocation use the
null pointer to represent the empty structure. Because the semantics of a null
pointer is too low-level to adequately encapsulate the behavior of an object, such
implementations have a high degree of code complexity, and are cumbersome to use.
A null pointer (or a null reference in Java) has no behavior and thus cannot map
well to the mathematical concept of the empty set, which is an object that exists
and that has behavior. Using this convention, the null pointer is used to represent
the non-existence of an object only.

The gap between the conceptual view of a container structure and its imple-
mentation could be narrowed this way. Emptiness and non-emptiness are simply
states of a container. A container structure is a system that may change its state
from empty to non-empty, and vice-versa. For example, an empty container changes
its state to non-empty after insertion of an object; and when the last element of a
container is removed, its changes its state to empty.

For each distinct state, the algorithms that implement the methods differ. For
example, the algorithm for the retrieve method is trivial in the empty state -it simply
returns null- while it is more complicated in the non-empty state. The system thus
behaves as if it changes classes dynamically. This phenomenon is called “dynamic

reclassification” .

The State pattern is a design solution for languages that do not support dynamic

reclassification directly. This pattern can be summarized as follow:

e Define an abstract class for the states of the system. This abstract state class should
provide all the abstract methods for all the concrete subclasses.

e Define a concrete subclass of the above abstract class for each state of the system.
Each concrete state must implement its own concrete methods.

e Represent the system by a class containing an instance of a concrete state. This
instance represents the current state of the system.

e Define methods to return the current state and to change state.

e Delegate all requests made to the system to the current state instance. Since this
instance can change dynamically, the system will behave as if it can change its class
dynamically.

Application of the State pattern for designing a linked list class is simple. We

name this class, List, and the abstract class for list states, AListNode (as in ab-

stract list node). AListNode has two concrete subclasses: EmptyListNode, and

341

V. Niculescu - A Design Patterns Perspective on Data Structures

public class List implements IContainer{
private AListNode _link; //state
AListNode link () {
return _link;

void changelLink (AListNode n) {
//Change state;
_link = n;

//Post: this List exists and is empty.
public List ()

//Pre : key and v are not null.

public void insert (Object key, Object v) {
_link.insert (this, key, v);

}

//***0ther constructors and methods... }
abstract class AListNode {
//Pre : 1, k and v are not null.
abstract void insert (List 1, Object k, Object v);
//**x0ther abstract methods...

class NonEmptyListNode extends AListNode {
private Object _key;
private Object _val;
private List _tail;

//Pre : k and v are not null.
//Post: this node exists and contains k, v, and an
empty tail.
NonEmptyListNode (Object k, Object v) {
_key = k;
_val = v;

_tail = new List ();

}

void insert (List 1, Object k, Object v) {
if (k.equals (key)) {
_val = v;

else {
_tail.insert (k, Vv);

} //**x0ther methods

class EmptyListNode extends AListNode {
void insert (List 1, Object k, Object v) {
changeLink (new NonEmptyListNode (k, v));

}

//**x0ther methods }

Figure 5: Java implementation of linked lists using State pattern.

342

V. Niculescu - A Design Patterns Perspective on Data Structures

NonEmptyListNode. The EmptyListNode has no data while the NonEmptyListNode
contains a data object, and a tail, which is a List. One can see how closely this
implementation maps to the following portion of the abstract definition of a list:
If a list is empty, it contains no data object. If it is not empty, it contains a data
object called the head, and a list object called the tail. The class List contains
an instance of a concrete subclass of AListNode. Via polymorphism, it can be an
EmptyListNode or a NonEmptyListNode at run time. In order to qualify it as a
container class, the class List adds to its behavior the three container methods:
insert, remove, and retrieve. A sketch of the Java implementation of such a list
is given in Figure 5.

3 Structural Design Patterns Used for DS Implementation

Structural patterns are concerned with how classes and objects are composed to
form larger structures; the class form of the Adapter design pattern is an example.
Structural class patterns use inheritance to compose interface or implementations.
Structural object patterns describe ways to compose objects to realize new func-
tionality; an example is Composite design pattern. They deal with run-time compo-
sitions that are more dynamic than traditional multiple inheritance, object sharing
and interface adaptation, and dynamic addition of responsibilities to objects [1].

3.1 Flyweight design pattern

A flyweight is an object that minimizes memory usage by sharing as much data as
possible with other similar objects; it is a way to use objects in large numbers when a
simple repeated representation would use an unacceptable amount of memory. Often
some parts of the object state can be shared, and it is common practice to hold them
in external data structures and pass them to the flyweight objects temporarily when
they are used.

The classes and/or objects participating in this pattern are:

e Flyweight declares an interface through which flyweights can receive and act on ex-
trinsic state.

e ConcreteFlyweight implements the Flyweight interface and adds storage for intrinsic
state, if any. A ConcreteFlyweight object must be sharable. Any state it stores must
be intrinsic, that is, it must be independent of the ConcreteFlyweight object’s context.

e UnsharedConcreteFlyweight. Not all Flyweight subclasses need to be shared. The Fly-
weight interface enables sharing, but it doesn’t enforce it. It is common for Unshared-
ConcreteFlyweight objects to have ConcreteFlyweight objects as children at some level
in the flyweight object structure.

343

V. Niculescu - A Design Patterns Perspective on Data Structures

Collection =< |nteffac g==
addie | Ohject) IStorane
0

! 7R
/

=<|nteface==

IStoraneFactory
createStorage) Hezwy Storage | Fhoweight Storage
;j ‘} T QD. n
F byweeightStor CollectionDbject
Heawy Storage I
i g aneFactory o

- oc curencesha Int eger

Fact
il Object || i Object

Figure 6: An implementation for collections based on FlyWeight, Bridge, and Ab-
stract Factory.

e FlyweightFactory creates and manages flyweight objects and ensures that flyweight
are shared properly. When a client requests a flyweight, the FlyweightFactory objects
supplies an existing instance or creates one, if none exists.

e (Client maintains a reference to flyweight(s), and computes or stores the extrinsic
state of flyweight(s).

We may apply a simplification of this design pattern when we implement a
collection (bag) data structure. If the objects which are stored are “heavy” — need a
lot of memory to be stored — and also there are many replication of the same object,
we may use a flyweight representation for the collection. This means that if there
are many occurrences of the same element, it is stored only once and the number of
occurrences is also stored (Figure 6). This representation of collection is a common
representation, but it also represents a good and very simple example of applying
FlyWeight design pattern.

When we extract an object from a flyweight collection, we have two possibilities:
either in the collection there is only one such element in which case we return that
object, or we have the case when we have many instances of that object, in which
case we return a copy of the stored object and decrease the corresponding number
of occurences.

3.2 Bridge

Bridge design pattern decouples an abstraction from its implementation so that the

two can vary independently.
The classes and/or objects participating in this pattern are:

344

V. Niculescu - A Design Patterns Perspective on Data Structures

e Abstraction defines the abstraction’s interface, and maintains a reference to an object
of type Implementor.

e RefinedAbstraction extends the interface defined by Abstraction.

e Implementor defines the interface for implementation classes. This interface doesn’t
have to correspond exactly to Abstraction’s interface; in fact the two interfaces can
be quite different. Typically the Implementator interface provides only primitive op-
erations, and Abstraction defines higher-level operations based on these primitives.

e ConcreteImplementor implements the Implementor interface and defines its concrete
implementation.

Based on this design pattern we may achieve the independence of representation
for a collection — so, to separate the elements storage from the abstraction (the in-
terface of a particular collection) [9]. For example we may allow two representations
(storages) for the collection: a “heavy” one which stores all the objects sequentially,
and a “flyweight” one which stores an object only once even if there are many oc-
currences of that object in the collection. For the last variant, each object is stored
together with the number of its occurrences. Also, we want to choose the represen-
tation dynamically, based on which type of objects we intend to store; so Abstract
Factory design pattern will be used for creating the storage of the collection (we will
discuss in more detail about this pattern in the next section).

Generally, if we have different ways of representation, or storage, for a data struc-
ture, we may separate the storage from the data structure (Bridge design pattern)
and use Abstract Factory to create a special storage dynamically. Another example
could be considered for implementing sets: their storage could be based on linked
lists, vectors, trees, etc. The advantages of this separation is that we will have only
one class Set, and we may specify when we instantiate this class what kind of storage
we want, for a particular situation. (Singleton is used since we don’t need more than
one instance of a specific factory class.)

3.3 Adapter

Adapter design pattern allows the conversion of the interface of a class into another
interface clients expect. Adapter lets classes work together that could not otherwise
because of incompatible interfaces.
The classes and/or objects participating in this pattern are:
Target defines the domain-specific interface that Client uses.
Adapter adapts the interface Adaptee to the Target interface.
Adaptee defines an existing interface that needs adapting.
Client collaborates with objects conforming to the Target interface.

One of the disadvantages of using polymorphic collection classes (not parameter-
ized collection) is that the collections may store arbitrary objects, which means, in
particular, that compile-time type checking cannot be performed on the collections

345

V. Niculescu - A Design Patterns Perspective on Data Structures

to ensure that the objects they contain belong only to a desired subclass. For exam-
ple, a Vector that is intended to be used only to contain Strings could accidentally
have an Integer added to it. Furthermore, the code for extracting the Strings from
such a Vector involves typecasting, which can make the code quite inelegant.

A solution to this problem is to implement StringVector class that is similar to
a Vector but contains only Strings. In this new class, the methods’ signatures and
return values would refer to Strings instead of Objects. For example, the ”add”
method will take a String as its parameter and the ”get” method will have String
as the return type.

The natural way to implement the StringVector class is by using the Adapter
pattern. That is, a StringVector object contains a reference to a Vector in which the
Strings are actually stored. In this way, the interface is adapting the Vector class to
the desired StringVector’s interface.

Adapter design pattern could be also used in order to adapt a general list to be
a stack (or a queue). A stack follows the principle: “First-In First-Out”, and the
opertions with stacks are: push, pop, and state verification operations (isEmpty,
isFull). The operation of the stack will be implemented based on the list operations.
So, a list is adapted to be a stack.

3.4 Decorator

Decorator pattern is used to attach additional responsibilities to an object dynami-
cally. We can add extra attributes or “decoration” to objects with a certain interface.
The use of decorator is motivated by the need of some algorithms and data struc-
tures to add extra variables or temporary scratch data to the objects that will not
normally need to have such variables. Decorators provide a flexible alternative to
subclassing for extending functionality.

The classes and/or objects participating in this pattern are:

e (Component defines the interface for objects that can have responsibilities
added to them dynamically.

e (ConcreteComponent defines an object to which additional responsibilities can
be attached.

e Decorator maintains a reference to a Component object and defines an inter-
face that conforms to Component’s interface.

e (ConcreteDecorator adds responsibilities to the component.

For example, in implementing balanced binary search trees we can use a binary
search tree class to implement a balanced tree. However, the nodes of a binary search
tree will have to store extra information such a balance factor (for AVL trees) or a

346

V. Niculescu - A Design Patterns Perspective on Data Structures

color bit (for red-black) trees). Since the nodes of a generic binary search tree do
not have such variables, they can be provided in the form of decorations.

In the implementation of graph traversal algorithms, such as depth-first and
breadth-first we can use the decorator design pattern to store temporarily informa-
tion about whether a certain vertex of the graph has been visited.

3.5 Composite

Composite design pattern compose objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual objects and compositions
of objects uniformly [1].

The classes and/or objects participating in this pattern are:

o Component declares the interface for objects in the composition, implements
default behavior for the interface common to all classes, as appropriate, and
declares an interface for accessing and managing its child components. Op-
tional it could define an interface for accessing a component’s parent in the
recursive structure, and implements it if that’s appropriate.

e Leaf represents leaf objects in the composition. A leaf has no children, and
defines behavior for primitive objects in the composition.

e (Composite defines behavior for components having children, stores child com-
ponents, and implements child-related operations in the Component interface.

e (lient manipulates objects in the composition through the Component inter-
face.

The implementation of the tree structures are obvious examples of using Com-
posite design pattern. A formal definition of a tree says that it is either empty
(no nodes), or a root and zero or more subtrees. In the case of binary trees each
composite component has two children: left and right subtrees.

Any operation on these binary trees could be implemented by the applying the
following three steps (not necessarily in this particular order):

- apply the operation to the left subtree;
- apply the operation to the right subtree;
- apply the operation to the root;

and then combine the results.

Examples of such operations are: determining the height, the number of nodes,
etc. There is a strong relation between recursion and this way of representing data
structures.

Multidimensional or heterogeneous linked lists may also be implemented based
on this design pattern. A heterogeneous linked list is formed by elements which are

347

V. Niculescu - A Design Patterns Perspective on Data Structures

not of the same type: they could be simple data or they could be also lists. So, a
node of such a list is either an atomic node (contains a datum, and no link reference),
or a node that refer to a sublist. As for trees the operations on heterogeneous list
are easily implemented if the representation is based on Composite pattern.

4 Creational Patterns used for DS Implementation

Creational design patterns abstract the instantiation process. A class creational
pattern uses inheritance to vary the class that is instantiated, whereas an object
creational pattern will delegate instantiation to another object [1].

4.1 Abstract Factory and Singleton

Abstract Factory design pattern provides an interface for creating families of related
or dependent objects without specifying their concrete classes [1]. We can use it
when:

e a system should be independent of how its products are created, composed,
and represented.

e a system should be configured with one of multiple families of products.

e a family of related product objects is designed to be used together, and we
need to enforce this constraint.

e we want to provide a class library of products, and we want to reveal just their
interaces, not their implementations.

The classes and/or objects participating in this pattern are:

AbstractFactory declares an interface for operations that create abstract products;
ConcreteFactory implements the operations to create concrete product objects;
AbstractProduct declares an interface for a type of product object;

Product defines a product object to be created by the corresponding concrete factory,
and implements the AbstractProduct interface;

e (lient uses interfaces declared by AbstractFactory and AbstractProduct classes.

An example of using AbstractFactory for data structures has been presented in
Section 3 when we have emphasized the possibility to separate the storage of a
container from its interface. AbstractFactory classes are defined in order to allow
choosing the type of storage when a container is instantiated.

If we consider the case of the stacks, we have an interface Stack that defines the
specific operations based on ADT Stack; a stack is a specialized list, and so it could
be constructed based on a list. But we may use different kind of lists: ArrayList,
DynamicLinkedList (with dynamically allocated nodes), or StaticLinkedList (with
nodes which are allocated into a table). We don’t have to define many classes for

348

V. Niculescu - A Design Patterns Perspective on Data Structures

=z |nteffac g== StackL -igt|==Interface==
Stack ; LinkedList

fushi s X;f
popG - ﬁh
peeki) il
isEmpty SlinkedList DlLinkedList
isFulld

= A

- ;

SLinkedlistF actory CiLinkedListFactary

==|nterface==

ListF actarny

createlist) ;. Linkedlist

Figure 7: Using Abstract Factory and Adapter design patterns for implementing
stacks.

class StackL implements Stack {
public StackL (ListFactory factory) {
list = factory.createlList(); // an empty list is created
}

public void push(Object o) {
list.addFirst (o) ;
}

public Object pop() {
o = list.removeFirst();
return o;
) }
public Object peek() {
o = list.getFirst();
return o;
}
public boolean isEmpty() {
return list.isEmpty();
}

private LinkedList list;

Figure 8: Java implementation of the class StackL.

349

V. Niculescu - A Design Patterns Perspective on Data Structures

=z |nteffac g== StackL -igt|==Interface==
Stack ; LinkedList
fushi s :/-7
popG - ﬁl\
peeki) il
isEmpty SlinkedList DlLinkedList
isFulld
= A
- ;
SLinkedlistF actory CiLinkedListFactary
==|nterface==
ListF actarny

createlist) ;. Linkedlist

Figure 9: Using Abstract Factory and Adapter design patterns for implementing
stacks.

stacks: it is enough if we define factories that create different kinds of list as a base
for stacks which are being instantiated (see Figure 9).

In order to make these things clear, we present a Java implementation of the
class StackL in the Figure 8. The stack has a member list of type LinkedList,
which is created when the stack is instantiated; the creation is the responsibility of
the factory which is given as a parameter to the constructor. If the parameter has
the type SLinkedListFactory it will create a list of type SLinkedList, and if it
has the type DLinkedListFactory it will create a list of type DLinkedList.

A stack could be created either using SLinkedListFactory or DLinkedList-
Factory (Figure 10). Only one instance is necessary for any kind of factory, so
Singleton design pattern is used, too. Usually, we don’t need more than one instance
of a factory class.

Singleton design pattern ensures a class has only one instance and provides a
global point of access to it [1].

Another example could be given for priority queues. A Priority Queue is a
queue in which elements are added based on their priorities. These priorities could
represent different things for different objects and they may have different types.
Also, for objects of a certain type we may define different priorities. For example, for
students we may define a priority depending on their average degree when we intend
to use a priority queue for scholarships, but if we intend to give social scholarships
we need a priority depending on their social situation (which may be computing
based on several attributes of the Student class). In order to achieve this flexibility,

350

V. Niculescu - A Design Patterns Perspective on Data Structures

// a stack based on a static linked list
Stack sl = new StackL(SLinkedListFactory.instance());

// a stack based on a dynamic linked list }
Stack s2 = new StackL(DLinkedListFactory.instance());
Figure 10: Examples of StackL instantiation.
FPrioftyQuese
i Aot Corshucdor
oo ()l ;- Oyt P
ocah ¢ Ciect] computePriodin | Obfect) | Comparable
i=Emoty (] - Boolear

AR

Heap LinkedProrityQueue | StudentDegrePC| |StudentdameFC
storage : AmayList ||storage : LinkedList

Figure 11: Using Abstract Factory for implementing a priority queue.

we may use Abstract Factory design pattern, where the factory will be a factory of
priorities [8]. It can be argued that a comparator, as for sorted structures, may be
enough but there are cases when we need to know also the values for the chosen
priority.

PriorityConstructor is the abstract factory class, and its method compute-
Priority calculates the priority for the object argument; the result should be an
object which is Comparable. Subclasses of this abstract factory are defined for
special priorities for special types of objects. A single instance of each of these
subclasses is enough, so Singleton [1] design pattern can be used, too.

In addition, one advantage of this approach of implementing priority queues is
that we do not have to store the priorities for the constitutive elements. They may
be computed at every moment by the PriorityConstructor.

4.2 Builder

Builder design pattern separates the construction of a complex object from its repre-
sentation, so that the same construction process can create different representations.
The classes and/or objects participating in this pattern are:
e Builder specifies an abstract interface for creating parts of a Product object;
e ConcreteBuilder constructs and assembles parts of the product by implementing the
Builder interface, defines and keeps track of the representation it creates, and provides
an interface for retrieving the product;

351

V. Niculescu - A Design Patterns Perspective on Data Structures

// Builder for making trees - base class
class TreeBuilder {
public void AddNode(TreeNode theNode) {}
public TreeNode GetTree() { return null; }
protected TreeBuilder() {};

}

Figure 12: Builder for making trees - the base class.

class BinaryTreeBuilder extends TreeBuilder {
public BinaryTreeBuilder (){ _currentBTree = null;}
public void AddNode(TreeNode theNode){

public TreeNode GetTree(){
return _currentBTree;
}

private TreeNode _currentBTree;

}

Figure 13: Builder for making binary trees.

e Director constructs an object using the Builder interface;

e Product represents the complex object under construction. ConcreteBuilder builds the
product’s internal representation and defines the process by which it’s assembled, and
includes classes that define the constituent parts, including interfaces for assembling
the parts into the final result.

The following example uses Builder design pattern in order to create binary
search trees. Two different builders are defined: one that create simple binary
search trees (unbalanced), and another that create balanced binary search trees.

The TreeBuilder class hierarchy implements the Builder design pattern. It
encapsulates the building of a composite data structure and hides the details of how
that structure is composed by defining an AddNode member function to add nodes
to the tree. The base class defines this interface.

New nodes are added to the current tree being built by allocating them and
passing them to the TreeBuilder AddNode member function. The completed tree
is returned by the GetTree member function. The BinaryTreeBuilder subclass
implements a simple binary tree. No effort is made to balance the tree.

The AddNode member function traverses the current tree, comparing the new
node to the current node. Once the correct location is located (i.e., a leaf node is
reached) the new node is added as a left or right child of the leaf node.

352

V. Niculescu - A Design Patterns Perspective on Data Structures

class HBTreeBuilder extends TreeBuilder {
public HBTreeBuilder(){
_currentBTree = null;

}

public TreeNode GetTree(){
return _currentBTree;
}

public void AddNode(TreeNode theNode){

}

private TreeNode _currentBTree;

Figure 14: Builder for making height-balanced binary trees.

The HBTreeBuilder subclass builds height-balanced binary trees. To implement
a height-balanced binary tree we restructure the tree as we add new nodes. This
class has the same structure as BinaryTreeBuilder; the difference is in the AddNode
member function, which traverses the current tree, comparing the new node to the
current node. This version keeps track of the previous two nodes visited as the tree
is traversed. Once the correct location is found (that is, a leaf node is reached) the
current and previous nodes are checked to see if both lack a child on the opposite
side. If they do, then the subtree from the grandparent node (that is, two nodes
above the leaf) is re-arranged such that it forms a balanced tree when a new node
is added.

5 Conclusion

Design patterns allow data structures to be implemented in a very general and flex-
ible way. Since we have so many types of data structures the possibility of creating
some of these based on some fundamental data structures and add new proper-
ties easily could influence the scalability of a collections library bringing important
advantages.

Behavioral patterns focus more on communication and interaction, dynamic in-
terfaces, object composition, and object dependency. We have presented some ex-
amples of data structures that use the advantages brought by behavioral design
patterns: Iterator, Template Method, Visitor, Stategy, Comparator, State. Struc-
tural patterns focus on the composition of classes and objects into larger structures.
The given examples illustrates the advantages of the following design patterns: Fly-
weight, Bridge, Adapter, Decorator, Composite. When you are designing complex

353

V. Niculescu - A Design Patterns Perspective on Data Structures

object oriented systems we often rely on composite objects along with class-based
inheritance. Creational patterns are used to delegate instantiation, abstract behav-
ior, and hide instantiation and composition details. By using some examples we
have presented advantages of the patterns: Abstract Factory, Singleton and Builder,
when are used for data structures implementation.

Understanding design patterns is an important aspect of modern software devel-
opment. Usually design patterns are introduced late into an undergraduate curricu-
lum. For teaching, introducing design patterns in presentation of the data structures
could represent also an important advantage. Students may beneficiate of an easy
way of understanding design patterns in the early stages of their preparation [7].
We believe that design patterns deserve a more ubiquitous role in the undergradu-
ate curriculum. Some modifications and simplifications of the design patterns could
be necessary when they are used for data structures construction, but these do not
interfere with the primary message of each design pattern but rather highlight it.

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable

Object Oriented Software, Addison-Wesley, 1995.

E. Horowitz. Fundamentals of Data Structures in C++. Computer Science Press, 1995.

3] S. Merritt, An Inverted Taxonomy of Sorting Algorithms, Comm. ACM, 28, 1 (Jan.

1985), 96-99.

4] D.M. Mount. Data Structures, University of Maryland, 1993.

5] D. Nguyen. Design Patterns for Data Structures. SIGCSE Bulletin, 30, 1, March 1998,

pp- 336-340.

6] D. Nguyen. Design Patterns for Sorting. SIGCSE Bulletin 2001 2/01 pp. 263-267.

7] V. Niculescu. Teaching about Creational Design Patterns, Workshop on Pedagogies
and Tools for Learning Object-Oriented Concepts, ECOOP’2003, Germany, July 21-
25, 2003.

[8] V. Niculescu. Priority Queues Implementation Based on Design Patterns, Proceedings
of the Symposium ”Zilele Academice Clujene”, 2006, pp. 27-32.
[9] V. Niculescu. Storage Independence in Data Structures Implementation, Studia Univer-
sitatis " Babes-Bolyai”, Informatica, Special Issue, LVI(3), pp. 21-26, 2011.
[10] D.R. Musser, A. Scine, STL Tutorial and Reference Guide: C++ Programming with
Standard Template Library, Addison-Wesley, 1995.
[11] B.R. Preiss. Data Structures and Algorithms with Object-Oriented Design Patterns in
Java, Wiley Computer Publishing, 1999.

DN

Virginia Niculescu

Department of Computer Science

Babes-Bolyai University of Cluj-Napoca

Address: 1, M. Kogalniceanu, Cluj-Napoca, Romania
email:vniculescu@cs.ubbcluj.ro

354

