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A SUBCLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH
THE HURWITZ - LERCH ZETA FUNCTION
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Abstract. Making use of a convolution operator involving the Hurwitz-Lerch
Zeta function,we introduce a new class of analytic functions PT (λ, α, β) defined in
the open unit disc,and investigate its various characteristics.Further we obtained
distortion bounds, extreme points and radii of close-to-convexity, starlikeness and
convexity for functions belonging to the class PT (λ, α, β).
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1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
k=2

akz
k (1)

which are analytic and univalent in the open disc U = {z : z ∈ C; |z| < 1}. For
functions f ∈ A given by (1) and g ∈ A given by g(z) = z +

∑∞
k=2 bkz

k , we define
the Hadamard product (or convolution) of f and g by

(f ∗ g)(z) = z +
∞∑
k=2

akbkz
k, z ∈ U (2)

We now recall a general Hurwitz- Lerch Zeta function Φ(z, s, a) (cf.,e.g., [18])
defined by

Φ(z, s, a) :=
∞∑
k=0

zk

(k + a)s
(a ∈ C\{Z−0 }; s ∈ C,<(s) > 1 and |z| = 1) (3)

where, as usual,

Z−0 := Z\{N}, (Z := {±1,±2,±3, ...});N := {1, 2, 3, ...} .
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Several interesting properties and characteristics of the Hurwitz - Lerch Zeta
function Φ(z, s, a) can be found in the recent investigations by Choi and Srivastava
[4], Ferreira and Lopez [5], Garg et al. [7], Lin and Srivastava [11], Lin et al. [12],
and others. In 2007, Srivastava and Attiya [17] (see also Riaducanu and Srivastava
[14], Prajapat and Goyal [13]) introduced and investigated the linear operator:

µ,b : A→ A

defined, in terms of the Hadamard product (or convolution), by

µ,bf(z) = gµ,b ∗ f(z), (4)

(z ∈ U; b ∈ C\{Z−0 };µ ∈ C; f ∈ A), where, for convenience,

gµ,b(z) := (1 + b)µ[Φ(z, µ, b)− b−µ] (z ∈ U) . (5)

We recall here the following relationships (given earlier in [13, 14]) which follow
easily by using (1), (4) and (5)

µ,bf(z) = z +
∞∑
k=2

Ck(b, µ)akz
k, (6)

where

Ck(b, µ) = (
1 + b

k + b
)µ, (7)

and (throughout this paper unless otherwise mentioned) the parameters µ and b are
constrained as b ∈ C\{Z−0 } and µ ∈ C.
(1) For µ = 0,

0,bf(z) := f(z). (8)

(2) For µ = 1, b = 0,

1,0f(z) :=

∫ z

0

f(t)

t
dt := Lbf(z). (9)

(3) For µ = 1 and b = ν (ν > −1),

1,νf(z) :=
1 + ν

zν

∫ z

0
tν−1f(t)dt = z +

∞∑
k=2

(
1 + ν

k + ν
)akz

k := Fνf(z). (10)

(4) For µ = σ(σ > 0) and b = 1

σ,1f(z) := z +
∞∑
k=2

(
2

k + 1
)σakz

k := Jσf(z), (11)
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where Lb(f) and Fν are the integral operators introduced by Alexander [1] and
Bernardi [3], respectively, and σ(f) is the Jung-Kim-Srivastava integral operator [9]
closely related to some multiplier transformations studied by Flett [6]. Making use
of the operatorµ,b we introduce a new subclass of analytic functions with negative
coefficients, and discuss some standard properties of geometric function theory in
relation to this generalized class. Forλ ≥ 0, 0 ≤ α < 1 and 0 < β ≤ 1, we let
P (λ, α, β) be the subclass of A consisting of functions of the form (1) and satisfying
the inequality ∣∣∣∣∣ µb,λf(z)− 1

2γ(b,λµ f(z)− α)− (b,λµ f(z)− 1)

∣∣∣∣∣ < β, (12)

where

b,λµ f(z) = (1− λ)
µ,bf(z)

z
+ λ(µ,bf(z))′, (13)

0 < γ ≤ 1, andbµf(z) is given by (6). We further let

PT (λ, α, β) = P (λ, α, β) ∩ T,

where

T := {f ∈ A : f(z) = z −
∞∑
k=2

|ak| zk, (z ∈ U)} (14)

is a subclass of A introduced and studied by Silverman [16]. Furthermore, we note
that by suitably specializing the values of α, β, γ and λ the class PT (λ, α, β) and
the above subclasses reduce to the various subclasses introduced and studied in the
literature, for example see [2,9].

In the following section we obtain coefficient estimates and extreme points for
the class PT (λ, α, β).

2.Coefficient bounds

Theorem 1.Let the function f be defined by (14). Then f ∈ PT (λ, α, β) if and
only if

∞∑
k=2

(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)| ak ≤ 2βγ(1− α) . (15)

The result is sharp for the function

f(z) = z − 2βγ(1− α)

(1 + λ(k − 1))
[1 + β(2γ − 1)] |Ck(b, µ)| zk, k ≥ 2 , (16)
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where Ck(b, µ) is defined by (7).

Proof. Suppose f satisfies (15). Then for |z| < 1 we have,∣∣∣b,λµ f(z)− 1
∣∣∣− β ∣∣∣2γ(b,λµ f(z)− α)− (b,λµ f(z)− 1)

∣∣∣
=

∣∣∣∣∣−
∞∑
k=2

(1 + λ(k − 1))Ck(b, µ)akz
k−1

∣∣∣∣∣
−β

∣∣∣∣∣2γ(1− α)−
∞∑
k=2

(1 + λ(k − 1))(2γ − 1)Ck(b, µ)akz
k−1

∣∣∣∣∣
≤
∞∑
k=2

(1 + λ(k − 1)) |Ck(b, µ)| ak − 2βγ(1− α)

+
∞∑
k=2

(1 + λ(k − 1))β(2γ − 1) |Ck(b, µ)| ak

=

∞∑
k=2

(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)| ak − 2βγ(1− α)

≤ 0,

by (15). Hence, by the maximum modulus Theorem and (12), f ∈ PT (λ, α, β).
Conversely, assume that ∣∣∣∣∣ b,λµ f(z)− 1

2γ(b,λµ f(z)− α)− (b,λµ f(z))− 1)

∣∣∣∣∣
=

∣∣∣∣ −
∑∞

k=2(1 + λ(k − 1))Ck(b, µ)akz
k−1

2γ(1− α)−
∑∞

k=2(1 + λ(k − 1))(2γ − 1)Ck(b, µ)akzk−1

∣∣∣∣
≤ β, z ∈ U.

Or, equivalently,

Re{
∑∞

k=2(1 + λ(k − 1)) |Ck(b, µ)| akzk−1

2γ(1− α)−
∑∞

k=2(1 + λ(k − 1))(2γ − 1)Ck(b, µ)akzk−1
} < β. (17)

Since Re(z) ≤ |z| for all z, choose values of z on the real axis so that b,λµ f(z) is real.
Upon clearing the denominator in (17) and letting z → 1 through real values, we
obtain the desired inequality (15). �
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Corollary 1.If f(z) of the form (14) is in PT (λ, α, β) then

ak ≤
2βγ(1− α)

(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|
, k ≥ 2, (18)

with equality only for functions of the form (16).

Theorem 2. Let
f1(z) = z

and

fk(z) = z − 2βγ(1− α)

1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|
zk, k ≥ 2, (19)

for 0 ≤ α < 1, 0 < β ≤ 1, λ ≥ 0 and 0 < γ ≤ 1. Then f(z) is in the class PT (λ, α, β)
if and only if it can be expressed in the form

f(z) =

∞∑
k=2

ωkfk(z), (20)

where ωk ≥ 0 and
∑∞

k=1 ωk = 1.

Proof. Suppose f(z) can be written as in (20). Then

f(z) = z −
∞∑
k=2

ωk
2βγ(1− α)

(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|
zk .

Now,

∞∑
k=2

(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|
2βγ(1− α)

ωk
2βγ(1− α)

(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|

=

∞∑
k=2

ωk = 1− ω1 ≤ 1 .

Thus f ∈ PT (λ, α, β). Conversely, let f ∈ PT (λ, α, β). Then by using (18), we set

ωk =
(1 + (λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|

2βγ(1− α)
ak, k ≥ 2

and ω1 = 1 −
∑∞

k=2 ωk. Then we have f(z) =
∑∞

k=1 ωkfk(z), and hence this com-
pletes the proof of Theorem 2. �
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3.Distortion bounds

In this section we obtain distortion bounds for the class PT (λ, α, β).
Theorem 3. If f ∈ PT (λ, α, β), then

r − 2βγ(1− α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
r2 ≤ |f(z)| (21)

≤ r +
2βγ(1− α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
r2

holds if the sequence {σk(λ, β, γ)}∞k=2 is non-decreasing, and

1− 4βγ(1− α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
r ≤

∣∣f ′(z)∣∣ (22)

≤ 1 +
4βγ(1− α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
r

holds if the sequence {σk(λ, β, γ)/k}∞k=2 is non-decreasing, where

σk(λ, β, γ) = (1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)| .

The bounds in (21) and (22) are sharp, since the equalities are attained by the
function

f(z) = z − 2βγ(1− α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
z2, z = ±r . (23)

Proof. In view of Theorem 1, we have

∞∑
k=2

ak ≤
2βγ(1− α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
. (24)

Using (14) and (24), we obtain

|z| − |z|2
∞∑
k=2

ak ≤ |f(z)|

≤ |z|+ |z|2
∞∑
k=2

ak.
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So,

r − r2 2βγ(1− α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
≤ |f(z)| (25)

≤ r + r2
2βγ(1− α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
.

Hence (21) follows from (25). Further,

∞∑
k=2

kak ≤
4βγ(1− α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
.

Hence (22) follows from

1− r
∞∑
k=2

kak ≤
∣∣f ′(z)∣∣ ≤ 1 + r

∞∑
k=2

kak .

�

4.Radius of starlikeness and convexity

The radii of close-to-convexity, starlikeness and convexity for the class PT (λ, α, β)
are given in this section.

Theorem 4. Let the function f(z) defined by (14) belong to the class
PT (λ, α, β), Then f(z) is close-to-convex of order δ, (0 ≤ δ < 1) in the disc |z| < R1,
where

R1 := inf
k≥2

[
(1− δ)(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|

2kβγ(1− α)
]

1
k−1 (26)

The result is sharp, with extremal function f(z) given by (19).
Proof. Given f ∈ T and f is close-to-convex of order δ, we have

∣∣f ′(z)− 1
∣∣ < 1− δ . (27)

For the left hand side of (27) we have

∣∣f ′(z)− 1
∣∣ ≤ ∞∑

k=2

kak |z|k−1 .

361



Sh. Najafzadeh and E. Pezeshki - A subclass of analytic functions...

The last expression is less than 1− δ if

∞∑
k=2

k

1− δ
ak |z|k−1 < 1 .

Using the fact that f ∈ PT (λ, α, β) if and only if

∞∑
k=2

(1 + λ(k − 1))[1 + β(2γ − 1)]ak |Ck(b, µ)|
2βγ(1− α)

≤ 1,

So (27) is true if

k

1− δ
|z|k−1 ≤ 1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|

2βγ(1− α)
.

Or, equivalently,

|z|k−1 ≤ [
(1− δ)(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|

2kβγ(1− α)
],

which completes the proof. �

Theorem 5. Let f ∈ PT (λ, α, β). Then
(1) f is starlike of order δ, (0 ≤ δ < 1), in the disc |z| < R2 , where

R2 = inf
k≥2
{(1− δ)(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|

2βγ(1− α)(k − δ)
}

1
k−1

(2) f is convex of order δ , (0 ≤ δ < 1), in the disc |z| < R3 , that is where

R3 = inf
k≥2
{(1− δ)(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|

2βγ(1− α)k(k − δ)
}

1
k−1 .

Each of these results is sharp for the extremal function f(z) given by (19).

Proof. (1) Given f ∈ T and f starlike of order δ , we have∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 1− δ . (28)

For the left hand side of (28) we have∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ≤ ∑∞k=2(k − 1)ak |z|k−1

1−
∑∞

k=2 ak |z|
k−1 .
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The last expression is less than 1− δ if

∞∑
k=2

k − δ
1− δ

ak |z|k−1 < 1 .

Using the fact that f ∈ PT (λ, α, β) if and only if

∞∑
k=2

(1 + λ(k − 1))[1 + β(2γ − 1)]ak |Ck(b, µ)|
2βγ(1− α)

< 1,

we can say (28) is true if

k − δ
1− δ

|z|k−1 < (1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|
2βγ(1− α)

.

Or, equivalently,

|z|k−1 < (1− δ)(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|
2βγ(1− α)(k − δ)

which yields the starlikeness of the family.
(2) Using the fact that f is convex if and only if zf ′ is starlike, we can prove (2) on
lines similar to the proof of (1). �

5.Neighborhood property

In this section we study neighborhood property for functions in the class
PT (λ, α, β).

Definition. For functions f belong to P (λ, α, β) of the form (1) and γ ≥ 0, we
define η − γ-neighborhood of f by

Nη
γ (f) = {g(z) ∈ P (λ, α, β) : g(z) = z +

∞∑
k=2

bkz
k,

∞∑
k=2

kη+1 |ak − bk| ≤ γ},

where η is a fixed positive integer.

By using the following lemmas we will investigate the η − γ-neighborhood of
functions in PT (λ, α, β).

Lemma 1. Let p ≥ 0 and −1 ≤ θ < 1. if g(z) = z +
∑∞

k=2 bkz
k satisfies

∞∑
k=2

kρ+1 |bk| ≤
2θγ(1− α)

1 + θ(2γ − 1)
,
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then g(z) ∈ PT (λ, α, β).

Proof. By using Theorem 1, it is sufficient to show that

(1 + λ(k − 1))[1 + θ(2γ − 1)]

2θγ(1− α)
(
ρ+ 1

ρ+ k
)µ =

kρ+1

2θγ(1− α)
(1 + θ(2γ − 1)) .

But
[1 + θ(2γ − 1)]

2θγ(1− α)
(
ρ+ 1

ρ+ k
)µ ≤ kρ+1

2θγ(1− α)
[1 + θ(2γ − 1)] .

Therefore it is enough to prove that

Q(k, ρ) =
( ρ+1
ρ+k )µ

kρ+1
≤ 1 .

The result follows because the last inequality holds for all k ≥ 2. �

Lemma 2. Let f(z) = z −
∑∞

k=2 akz
k ∈ T , −1 ≤ α < 1 , 0 < β ≤ 1, λ ≥ 0 and

ε ≥ 0. If f(z)+εz
1+ε ∈ PT (λ, α, β) then

∞∑
k=2

kρ+1ak ≤
2ρ+1[2βγ(1− α)(1 + ε)]

(1 + λ)[1 + β(2γ − 1)]
(
b+ 2

b+ 1
)µ

where either ρ = 0 and b ≥ 0 or ρ = 1 and 1 ≤ b ≤ 2.The result is sharp with the
extremal function

f(z) = z − 2βγ(1− α)(1 + ε)

(1 + λ)[1 + β(2γ − 1)]
(
b+ 2

b+ 1
)µz2, (z ∈ U) .

Proof. Letting g(z) = f(z)+εz
1+ε we have

g(z) = z −
∞∑
k=2

ak
1 + ε

zk, (z ∈ U) .

In view of Theorem 2, g(z) =
∑∞

k=1 ωkgk(z) where ωk ≥ 0,
∑∞

k=1 ωk = 1,

g1(z) = z
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and

gk(z) = z − 2βγ(1− α)(1 + ε)

(1 + λ(k − 1))[1 + β(2γ − 1)]
(
b+ k

b+ 1
)µzk (k ≥ 2) .

So we obtain

g(z) = ω1g1(z) +

∞∑
k=2

ωk[z −
2βγ(1− α)(1 + ε)

(1 + λ(k − 1))[1 + β(2γ − 1)]
(
b+ k

b+ 1
)µzk]

= z −
∞∑
k=2

ωk[
2βγ(1− α)(1 + ε)

(1 + λ(k − 1))[1 + β(2γ − 1)]
(
b+ k

b+ 1
)µ]zk .

Since ωk ≥ 0 and
∑∞

k=2 ωk ≤ 1, it follows that

∞∑
k=2

kρ+1ak ≤ 2ρ+1[
2βγ(1− α)(1 + ε)

(1 + λ(k − 1))[1 + β(2γ − 1)]
(
b+ k

b+ 1
)µ] .

Since whenever ρ = 0 and b ≥ 0 or ρ = 1 and 1 ≤ b ≤ 2 we conclude

W (k, ρ, α, β, ε, b, µ) = kρ+1[
2βγ(1− α)(1 + ε)

(1 + λ(k − 1))[1 + β(2γ − 1)]
(
b+ k

b+ 1
)µ],

is a decreasing function of k , the result will follow. So the proof is complete. �

Theorem 6. Let either ρ = 0 and b ≥ 0 or ρ = 1 and 1 ≤ b ≤ 2. Suppose
−1 ≤ β < 1, and

−1 ≤ θ < [1 + β(2γ − 1)](1 + λ)(b+ 1)µ − 2η+1[2βγ(1− α)(1 + ε)(b+ 2)µ]

(1 + λ)[1 + β(2γ − 1)](b+ 1)µ
,

f(z) ∈ T and f(z)+εz
1+ε ∈ PT (λ, α, β). Then the η−γ-neighborhood of f is the subset

of PT (λ, α, β), where

γ =
[1 + β(2γ − 1)]2θγ(1− α)(1 + λ)(b+ 1)µ − 2η+1[2βγ(1− α)(1 + ε)(b+ 2)µ(1 + θ(2γ − 1)]

(1 + θ(2γ − 1))(1 + λ)[1 + β(2γ − 1)](b+ 1)µ
.

The result is sharp.

Proof. For f(z) = z −
∑∞

k=2 |ak| zk , let g(z) = z +
∑∞

k=2 bkz
k be in Nη

γ (f). So
by Lemma 2, we have

∞∑
k=2

kη+1 |bk| =
∞∑
k=2

kη+1 |ak − bk − ak|
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≤ γ + 2η+1[
2βγ(1− α)(1 + ε)

(1 + λ)[1 + (2γ − 1)]
(
b+ 2

b+ 1
)µ]

By using Lemma 2, g(z) ∈ PT (λ, α, β) if

γ + 2η+1[
2βγ(1− α)(1 + ε)

(1 + λ)[1 + β(2γ − 1)]( b+2
b+1)µ

] ≤ 2θγ(1− α)

1 + θ(2γ − 1)
.

That is, γ ≤

1 + β(2γ − 1)]2θγ(1− α)(1 + λ)(b+ 1)µ − 2k+1[2βγ(1− α)(1 + ε)(b+ 2)µ(1 + θ(2γ − 1))]

(1 + λ)[1 + β(2γ − 1)](b+ 1)µ(1 + θ(2γ − 1))

and the proof is complete. �

6.Partial sums

In last section we verify some properties of partial sums of functions in the class
PT (λ, α, β).

Theorem 7. Let f(z) ∈ PT (λ, α, β) and define the partial sums f1(z) and fn(z)
by

f1(z) = z

and

fn(z) = z +
∞∑
k=2

akz
k, (n ∈ N, n > 1) (29)

If
∞∑
k=2

ck |ak| ≤ 1, (30)

where

ck =
[1 + λ(k − 1)][1 + β(2γ − 1)]

2βγ(1− α)
(
b+ 1

b+ k
)µ. (31)

Then fk(z) ∈ PT (λ, α, β) . Moreover

Re{ f(z)

fn(z)
} > 1− 1

cn+1
, (z ∈ U, n ∈ N) (32)

Re{fn(z)

f(z)
} > cn+1

1 + cn+1
(33)
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Proof. It is easy to show that f1(z) = z ∈ PT (λ, α, β). So by TLemma 2, and

condition (30), we have Nη
1 (z) ⊂ PT (λ, α, β), so fk ∈ PT (λ, α, β). Next, for the

coefficient ck it is easy to show that

ck+1 > ck > 1 .

Therefore by using (30) we obtain

n∑
k=2

|ak|+ cn+1

∞∑
k=n+1

|ak| ≤
∞∑
k=2

ck |ak| ≤ 1. (34)

By putting

h1(z) = cn+1{
f(z)

fn(z)
− (1− 1

cn+1
)} = 1 + cn+1(

f(z)

fn(z)
− 1)

= 1 + cn+1(
z +

∑∞
k=2 akz

k

z +
∑n

k=2 akz
k
− 1) = 1 + cn+1(

1 +
∑∞

k=2 akz
k−1

1 +
∑n

k=2 akz
k−1 − 1)

= 1 + cn+1[
1 +

∑∞
k=2 akz

k−1 − 1−
∑n

k=2 akz
k−1

1 +
∑∞

k=2 akz
k−1 ]

= 1 +
cn+1

∑∞
k=n+1 akz

k−1

1 +
∑n

k=2 akz
k−1 ,

and using (34), for all z ∈ U we have∣∣∣∣h1(z)− 1

h1(z) + 1

∣∣∣∣ =

∣∣∣∣∣cn+1
∑∞

k=n+1 akz
k−1

1 +
∑n

k=2 akz
k−1 +

cn+1
∑∞

k=n+1 akz
k−1

1 +
∑n

k=2 akz
k−1

∣∣∣∣∣
≤

cn+1
∑∞

k=2 |ak|
2− 2

∑n
k=2 |ak| − cn+1

∑∞
k=n+1 |ak|

≤ 1,

which proves (32). Similarly, if we put

h2(z) = {fn(z)

f(z)
− cn+1

1 + cn+1
}(1 + cn+1)

= 1−
(1 + cn+1

∑∞
k=n+1 akz

k−1)

1 +
∑∞

k=2 akz
k−1 ,

367



Sh. Najafzadeh and E. Pezeshki - A subclass of analytic functions...

and using (34) we obtain ∣∣∣∣h2(z)− 1

h2(z) + 1

∣∣∣∣ ≤ 1, (z ∈ U),

which yields the condition (33). So the proof is complete. �
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