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ABSTRACT. In this work, we study a class of fourth-order boundary value prob-
lems with eigenparameter dependent boundary conditions and transmission condi-
tions at a interior point. We obtain asymptotic formulae for its eigenvalues and
fundamental solutions.
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INTRODUCTION

It is well-known that many topics in mathematical physics require the inves-
tigation of eigenvalues and eigenfunctions of Sturm-Liouville type boundary value
problems. In recent years, more and more researches are interested in the discon-
tinuous Sturm-Liouville problems (see [1 — 12]). Various physics applications of this
kind problem are found in many literatures, including some boundary value problem
with transmission conditions that arise in the theory of heat and mass transfer (see
[5,6]). The literature on such results is voluminous and we refer to [1 — 12].

Fourth-order discontinuous boundary value problems with eigen-dependent bound-
ary conditions and with four transmission conditions at the point of discontinuity
have been investigated in [10, 11].

In this study, we shall consider a fourth-order differential equation

Lu = u® (2) 4 q(z)u(z) = u(z) (1.1)
in I =[-1,0) U (0,1], with boundary conditions at x = —1

Liu = aqu (—1) + agu” (1) =

0,
Lou = B/ (—1) + B (—1) = 0,

with the four transmission conditions at the points of discontinuity x = 0,
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E. Sen - Spectral properties of eigenvalues and fundamental solutions

Lau:=u(0+) —u(0—) =0, (1.4)
Lyu =’ (0+) —u' (0—) =0, (1.5)
Lsu = u" (04) — u” (0—) + X1 (0—) =0, (1.6)
Leu :=u" (04) — v (0—=) + Aou (0—) = 0, (1.7)
and the eigen-dependent boundary conditions at x =1
Lyu:= M (1) + u"l(l) 0, (1.8)

Lgu := A/ (1) +4”"(1) = 0,

where ¢(z) is a given real-valued function continuous in [—1,0) U (0,1] and has a
finite limit ¢(£+0) = lim, 10 q(z); A is a complex eigenvalue parameter; «;, 3;, d;
(i = 1,2) are real numbers and |ai| + |az| # 0, |B1] + |B2| # 0, [01] + |02] # 0.

2. PRELIMINARIES

Firstly we define the inner product in L? for every f,g € L? (I) as
0 1
<fvg>1:/ flgldx—i_/ fQde7
-1 0

where fi(x) = f(x) ‘[,1,0) , fa(z) = f(2) ‘(071]. It is easy to see that (L2 (1), [,})
is a Hilbert space. Now we define the inner product in the direct sum of spaces

L*(I)®Ce®C®Cs @ Cs, by
[F,G] == (f,9); + (h1, k1) + (ha, k2) + (hs3, k3) + (ha, k4)

for F:= (f, h1,ha, hs, ha), G := (g, k1, ko, ks, k4) € L* (I) ®CHC® Cs, ® Cs,. Then
Z:=(L*(I)®C®C®Cs, @ Cs,, [,-]) is the direct sum of modified Krein spaces.
A fundamental symmetry on the Krein space is given by

Jo 00 0 0

0 10 0 0
J:=10 01 0 0 ,

0 0 0 sgnd 0

0 0 O 0 sgndo

where Jy : L?(I) — L*(I) is defined by (Jof) (z) = f(x). Let (-,-) = [J-,],
then (-,-) is a positive definite inner product. It turns Z into a Hilbert space
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E. Sen - Spectral properties of eigenvalues and fundamental solutions

Zy = (L*(I) ®C @ C & Cs, ® Cs,,[J+,-]) .We define a linear operator A in Z by
the domain of definition

D (A) = {(J, b1 ha ks, ha) € Z | {7 € ACioe ((-1,0))., f5" € ACioe ((0,1)), =103,
L.f € L2(1)7 ka:07 k:mv ha :f(l)a ha :f,(l)v hs = 751f/(0)7 hy = 762](.(0)}7
AF = (Lf, = "), —f" @), f7(0+) = f"(0-), f(0+) = f" (0-)),
F=(f f(1), f'Q),=61f'(0), —02£(0)) € D(A).
Consequently, the considered problem (1.1)-(1.9) can be rewritten in operator form
as

AF = \F,

i.e., the problem (1.1)-(1.9) can be considered as the eigenvalue problem for the
operator A. Then, we can write the following conclusions:

Theorem 2.1. The eigenvalues and eigenfunctions of the problem (1.1)-(1.9)
are defined as the eigenvalues and the first components of the corresponding eigenele-
ments of the operator A respectively.

Theorem 2.2. The operator A is self-adjoint in Krein space Z (cf. Theorem
2.2 of [10]).

3. FUNDAMENTAL SOLUTIONS

Lemma 3.1. Let the real-valued function q(z) be continuous in [—1,1] and
fi(N) (i = 1,4) are given entire functions. Then for any \ € C the equation

u® (z) + q(@)u(z) = \u(z), el
has a unique solution u = u (x,\) such that
u(=1)=fi(N), u (=) =f(0), u"(-1) = f5(N), «" (=1) = fa(})
(oru() =), & (1) =LO), «" (1) = L), «" (1) = i(N).

and for each x € [-1,1], u(x,\) is an entire function of .
Proof. In terms of existence and uniqueness theorem in ordinary differential
equation theory, we can conclude this conclusion. W

Let ¢11 (z,A) be the solution of Eq. (1.1) in [-1,0) which satisfies the initial
conditions

¢11 (_1) = Q, ¢,11 (_1) - ¢,1/1 (_1) - 07 (blllll (_1) = —aj.
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By virtue of Lemma 3.1, after defining this solution, we may define the solution
¢12 (2, A) of Eq. (1.1) in (0,1] by means of the solution ¢11 (z,A) by the initial
conditions

12 (0) = 611 (0), ¢12 (0) = 1 (0), @15 (0) = ¢1; (0) — Ad17; (0),
12 (0) = 611 (0) — Ad2611 (0) . (3.1)
After defining this solution, we may define the solution ¢9; (x,\) of Eq. (1.1) in
[—1,0) which satisfies the initial conditions
$21 (1) =0, ¢y (=1) = P, ¢, (1) = =1, ¢y (—1) =0. (3.2)

After defining this solution, we may define the solution ¢9s (2, A) of Eq. (1.1) in
(0, 1] by means of the solution ¢9; (x, A) by the initial conditions

P22 (0) = ¢ (0) ¢’22 ( )= <75I21 (0) ) /2/2 (0) = /2,1 (O> - )\51¢/21 (0) )
P (0) = ¢51 (0) — Aaga1 (0) . (3.3)

Analogically we shall define the solutions x11 (z,A) and x12 (z,A) in the intervals
[—1,0) and (0, 1] respectively by the initial conditions

x12 (1) = =1, X2 (1) = X412 (1) = 0, X715 (1) = A, x11 (0) = x12 (0)

1 )
X11 (0) = X712 (0), X711 (0) = x5 (0) + Ad1 X712 (0), X711 (0) = x5 (0) + Ad2x12 (0) .
(3,:4)

Moreover, we shall define the solutions x21 (x,A) and x22 (x,\) in the intervals
[—1,0) and (0, 1] respectively by the initial conditions
X22 (1) =0, x5 (1) = =1, x5 (1) = A, x5 (1) =0, x21(0) = x22 (0),
X1 (0) = X2 (0), X1 (0) = x52 (0) + Adixa (0), X531 (0) = X3 (0) + Adax22 (0).

(3.5)
Let us consider the Wronskians
¢>11 (x,A) @21 (z,A) xu(x, ) x21 (2, )
Wl ()\) = 11 ($’ )‘) ,21 (CC, >‘) Xlll (.T, >‘) X/21 (33, >‘)
/1’1 (z,\) ’2/1 (z,7) X’1/1 (z,7) X/2/1 (z,\)
7 (T A) o591 (2, A) X1 (2, A) X517 (2, )
and

d12 (2, A) P22 (x,N) xi2(x,A) xo2 (2, A)
W2 (/\) = /12 ('737 >‘) /22 (l’, )‘) X/12 (l'a >‘) X/22 (ZL’, /\)

12 (@A) @by (,A) Xo (2, A) X5o (z,A) |
12 (@A) @55 (z,A) X135 (2, A) X35 (2, )
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which are independent of z and entire functions. This sort of calculation gives
Wi (A) =Wa(A).

Now we may introduce in consideration the characteristic function W () as
W (A) =W ().

Theorem 3.2. The eigenvalues of the problem (1.1)-(1.9) are the zeros of the
function W (X).
Proof. Let W (X\) = 0. Then the functions ¢11 (z,A), ¢21 (x,\) and x11 (2, A),
Xx21 (z, A) are linearly dependent, i.e.,

k1o (z,A) + kagar (2, A) + kaxa1 (z,A) + kaxa1 (z,A) =0
for some k1 # 0 or ky # 0 or k3 # 0 or kg # 0. From this, it follows that ksx11 (x, \)+
kaxo1 (z, \) satisfies the boundary conditions (1.2)-(1.3). Therefore
{ k3X1l (337 )‘) + k4X21 (SC, )‘) , T E [_17 0) )
k3xiz (2, A) + kax2z (z,A), @ € (0,1]

is an eigenfunction of the problem (1.1)-(1.9) corresponding to eigenvalue A.

Now we let u (z) be any eigenfunction corresponding to eigenvalue A, but W (\) #
0. Then the functions ¢11, ¢21, x11, x21 would be linearly independent on (0,1].
Therefore u (x) may be represented as

u(z) = { 1611 (2, A) + cador (z, A) + esx11 (2, N) + caxar (z,N), 2z €[-1,0);
csp12 (x, ) + cedaz (, ) + crxiz (z, A) + esxo2 (z,A), € (0,1],

where at least one of the constants ¢, ca, c3, ¢4, c5, cg, ¢7 and cg is not zero.
Considering the equations

Ly (u(z))=0, v=1,8 (3.6)

as a system of linear equations of the variables ci, cs, c3, c4, c5, cg, €7, cg and taking
(3.1)-(3.5) into account, it follows that the determinant of this system is

0 0 Lix11 Lix21 0 0 0 0

0 0 Laxn Loxa1 0 0 0 0

0 0 0 0 L3zp1a  Lagao 0 0

0 0 0 0 Lip1o  Ligoo 0 0
—¢12(0) —¢22(0) —x12(0) —x22(0) ¢12(0) ¢22(0) x12(0) x22(0)
=15 (0) =95 (0) —x12(0) —x22(0) ¢12(0) @5 (0) Xi2(0) x5 (0)
*¢I1,2 (0) *¢/2,2 (0) *X/1/2 (0) *XgQ (0) /1/2 (0) /2/2 (0) X/1/2 (0) X/2/2 (0)
—¢75(0) —¢55(0) —x13(0) —x33(0) ¢75(0) @5 (0) Xi3(0) x25(0)

=-W ()’ #0

Therefore, the system (3.6) has only the trivial solution ¢; = 0 (z = m) Thus we
get a contradiction, which completes the proof. W
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4. ASYMPTOTIC FORMULAE FOR EIGENVALUES AND FUNDAMENTAL SOLUTIONS

We start by proving some lemmas.
Lemma 4.1. Let ¢ (z,\) be the solution of Eq. (1.1), and let \ = s*, s = o +it.
Then the following integral equations hold for k =0,3 in [—1,0) U (0,1] :

dk dk dk
%%1(1‘,)\) O;Qd kcoss(:n—i—l)%—;—?)d—sms(x—i—l)
az  apy dF s(zt1 as oy dF Cs(z41
T 1) e (T o) e (4.1

1 [ gk
; ) — eS@—y) —s(z—y)
+ g | (s (@ =) = £ ) g () 1 (0.0

L (4200 ’1’2(0)>d’“cossx+( 50 o)

2 252 ) dzF 2s 253
. $12(0) | ¢15(0) | ¢15(0) | ¢f5(0)
st1nsx+< 1 4s T T4
dk sx ¢12 (0) (#12(0) /1/2 (0) /1//2 (0) dk —sx
X dk € +( 1 4s T4 T4 ) an©
Lo[rd o s@=Y) 5@ g (y) d1a (y, N) d
T 53 o daF sins(z —y) —e te q(y) 12 (y, A) dy.
(4.2)
d B d B2 d
. —— P21 (T, A) = 2—2d—coss($+1)+2—d—sms(x+1)

B2 _ B sy _ (B2 B\ @ e
+<4s 452 dxke 4s 42 d:rke

+ 1 /x d—k (sins (x—y) — e 4 e_s(m_y)) q(y) ¢21 (v, A) dy.
253 | dak ’
(4.3)
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& o) = (P20 O £ (40 O

2 252 ) dak 2s 253
. $22(0) | ¢ (0) | 95, (0) , ¢ (0)
X gk S sz + < 1 + s + 152 + 153
d s P22 (0) /22 (0) ,2/2 (0) /2,5 (0) d —sz
g T ( 4 4s T4 T 4d ) ank
o | "L (sins z ) — ) 4 D) g (3) dn (5, 3) dys
253 Jo dak ’

(4.4)

Proof. Regard ¢11 (z, \) as the solution of the following non-homogeneous Cauchy
problem:
4
~01Y (@) + s%6n1 (2) = ¢ (2) n1 (2, M),
¢11 (_L )\) = (2, ¢/11 (_17 )‘) = 07
/1/1 (_17 >‘) = 07 (ﬁ/llll (_17 A) = —0o1.

Using the method of variation of parameters, ¢11 (x, \) satisfies

11 (2, \) = %coss (x+1)+ %sins (x+1)+ <% - %813) Sany

a2 o\ @iy, LT N s(a—y)  —s(a—y)
-|-<4 —1—483)6 +2s3 /_1 (sms(;v y)—e +e >Q(y)¢11 (y,A) dy.

Then differentiating it with respect to x, we have (4.1). The proof for (4.2), (4.3)
and (4.4) is similar. W

Lemma 4.2. Let A\ = s*, s = 0 + it. Then the following asymptotic formulae
hold for k =10,3:

k k k
@ _ o2 d® a2 d° ( s@t1) 4 s(et) k=1 Js|(z+1)
dmk¢11 (x,A) = 5 doF coss (z+ 1)+ 1 (e +e )+O <|s| e >
(4.5)
dk 8251¢/11 (0) dk 852¢11 (0) dk .
%(ZHQ (.fU, )\) = f@ COS ST + #@ Sin sx
8251¢/11 (0) dk sx —Ssx 862¢11 (0) dk sx —sT

L0 <€|s|k<x+1>> .
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dF
H‘b” (x,\) = @— sins (z+1) + @— <€S(m+1) - e*S(mH)) +0 (]s]k_2 e|5|("”+1)) .

2s dzF 4s dxk
dk 25 k: ) k;
7d$k¢22 (x,\) = 1¢221( )d 7 COS 5T + 50200 ) 2¢;1( )dxk sin sz
3251¢/ ( ) k sx —sT 562¢21( ) dk sx —sT
e GGRGEE S Ly

+0 (e‘S‘k_l<‘”+I>> .

Each of these asymptotic formulae holds uniformly for x as |\ — oc.

Proof. Let Fyi (z,\) = e 1@t Dg ) (2 \). It is easy to see that Fyj (x,)) is
bounded. Therefore ¢11 (z,\) = O (e|5|(w+1)) . Substituting it into (4.1) and differ-
entiating it with respect to x for k = 0,3, we obtain (4.5). According to transmission
conditions (1.4)-(1.7) as |A| = oo, we get

P12 (0) = h11(0), P (0) = ¢ (0), ¢y (0) = —s*6167, (0), BT (0) = —s 26611 (0).

Substituting these asymptotic formulae into (4.2) for & = 0, we obtain

2¢
b12 (x, ) = 851¢211m) oS ST + W sin sz
2 /
B § 51¢11 (O) (esm + efsa:) B 862¢11 (0) (esm N efsac)
4 4
1 “l s(x— —s(xz—
+ 233/ (sms(m—y) — %) 4 ol y)> q(y) 12 (y, A) dy
0
+0 (eHleD). (4.7)

Multiplying through by |s| ™ e~5I@+1) "and denoting
Fia (2,)) = O (ysy ~lsl(a+1) ) 12 (2, \).

Denoting M := max,c(o 1] |F12 (7, A)| from the last formula, it follows that

M()\) < 3 |Oé251’ |042(52| M()\)

X
< dy + M,
1 452 " 2)sf /o 1(y)dy + Mo

for some My > 0. From this, it follows that M (\) = O (1) as |A| — oo, so
$12 (2,A) = O (‘3‘3 elsl(x+1)) :
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Substituting this back into the integral on the right side of (4.7) yields (4.6) for
k = 0. The other cases may be considered analogically. B
Similarly one can establish the following lemma. for x;; (z,A) (i = 1,2, j =1,2).
Lemma 4.3. Let A\ = st, s = o +it. Then the following asymptotic formulae
hold for k=10,3:
k 2 / k k
%Xll (z,N) = —M% cos sz + Mj? sin sz
2 ’ k k
S 51)5112 (O) % (esz 4 efscc) + 362X;2 (O) % (esz _ efsz)

+0 (\s|k+1 elsl(l*w)) .

+

d* d* 5y d - (o -
Tk X12 (z,\) = 5 sins(m—1)+5—2— (es<z Do 1>)+O(\s|k+lelsl(l I)).

- 2dzk 4 dx*
%Xﬂ (z,\) = *M% cos sT + %XTM(O)% sin sz
+ M;—; (e +e7*") + &&Xf”(ﬂ)% (€ — e=°7)
+0 (\s|k+2 elsl(l_m)) .

where k = 0,3. Each of these asymptotic formulae holds uniformly for x.
Theorem 4.4. Let A = s', s = o +it. Then the characteristic functions W; (\)
(1 = 1,2) have the following asymptotic formulae:

B 510200932512

Wi (\) =Wa(A) = 16

(2+coss (7 + %)) (7 +¢*) cos s+0 (Js|' 1)

Proof. Substituting the asymptotic equalities ;%Xll (—1,A) and Cg‘i—kkxgl (=1, )
into the representation of Wj (), we get

az 0 xuu(=LA) xa (=1} ,
0 L(=1,0) b (=1, 516 , ,
ww=l g S TN M = W00 -0 0)
—ar 0 X (=LA xz(=1,A)
a9 0 CcoS 8 e % —e°
0 P2 —ssins s(—e % —¢e°)
X 2 2 (.8 s
0 —p1 —s“coss s°(e®—e®)
—a; 0 —s3sins s3(—e7% —e)
1 0 sin s e’ +e’
0 0 scoss s(—e 5+e) 15 4‘5‘) B
Tlo -1 —s?sins 2 (e + €°) +O(’8’ ¢ =0
0 0 -—s’sins s3(—e*+e)
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Analogically, we can obtain the asymptotic formulae of W5 (\). W

Corollary 4.5. The real eigenvalues of the problem (1.1)-(1.9) are bounded
below.

Proof. Putting s* = it* (¢t > 0) in the above formulas, it follows that W (—t?) —
o0 as t — o0o. Therefore, W (\) # 0 for A negative and sufficiently large in modulus.
|

Now we can obtain the asymptotic approximation formulae for the eigenvalues
of the considered problem (1.1)-(1.9).

Since the eigenvalues coincide with the zeros of the entire function W (1)), it
follows that they have no finite limit. Moreover, we know from Corollary 4.5 that all
real eigenvalues are bounded below. Hence, we may renumber them as Ay < A\ <
Ao < ..., listed according to their multiplicity.

Theorem 4.6. The eigenvalues N\, = s+, n = 0,1,2,... of the problem (1.1)-
(1.9) have the following asymptotic formulae for n — oo :

=20 (1), =250 ().

Proof. By applying the well-known Rouché’s theorem, which asserts that if f (s)
and g (s) are analytic inside and on a closed contour C, and |g (s)| < |f (s)| on C,
then f (s) and f (s)+ g (s) have the same number zeros inside C' provided that each
zero is counted according to their multiplicity, we can obtain these conclusions. W
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