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THE MATRIX TRANSFORMATIONS ON ORLICZ SPACE OF χ

N.Subramanian,S.Krishnamoorthy and S. Balasubramanian

Abstract. Let χ denote the space of all gai sequences and Λ the space of

all analytic sequences. First we show that the set E =
{
s(k) : k = 1, 2, 3, · · ·

}
is a

determining set for χM . The set of all finite matrices transforming χM into FK-
space Y denoted by (χM : Y ) . We characterize the classes (χM : Y ) when Y =
(c0)π , cπ, χM , `π, `s,Λπ, hπ. In summary we have the following table:

↗ (c0)π cπ χM `π `s Λπ hπ
χM Necessary and sufficient condition on the matrix are obtained

But the approach to obtain these result in the present paper is by determining
set for χM . First, we investigate a determining set for χM and then we character-
ize the classes of matrix transformations involving χM and other known sequence
spaces.

2000 Mathematics Subject Classification: 40A05,40C05,40D05.

1. Introduction

A complex sequence, whose kth terms is xk is denoted by {xk} or simply x. Let w
be the set of all sequences x = (xk) and φ be the set of all finite sequences. Let
`∞, c, c0 be the sequence spaces of bounded, convergent and null sequences x = (xk)
respectively. In respect of `∞, c, c0 we have

‖x‖ =
sup

k |xk| , where x = (xk) ∈ c0 ⊂ c ⊂ `∞. A sequence x = {xk} is said

to be analytic if supk |xk|1/k < ∞. The vector space of all analytic sequences will

be denoted by Λ. A sequence x is called entire sequence if limk→∞ |xk|1/k = 0.
The vector space of all entire sequences will be denoted by Γ.χ was discussed in
Kamthan [19]. Matrix transformation involving χ were characterized by Sridhar
[20] and Sirajiudeen [21]. Let χ be the set of all those sequences x = (xk) such that

(k! |xk|)1/k → 0 as k →∞. Then χ is a metric space with the metric

d (x, y) = supk
{

(k! |xk − yk|)1/k : k = 1, 2, 3, · · ·
}
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Orlicz [4] used the idea of Orlicz function to construct the space (LM ). Lin-
denstrauss and Tzafriri [5] investigated Orlicz sequence spaces in more detail, and
they proved that every Orlicz sequence space `M contains a subspace isomorphic to
`p(1 ≤ p <∞). Subsequently different classes of sequence spaces defined by Parashar
and Choudhary[6], Mursaleen et al.[7], Bektas and Altin[8], Tripathy et al.[9], Rao
and subramanian[10] and many others. The Orlicz sequence spaces are the special
cases of Orlicz spaces studied in Ref[11].
Recall([4],[11]) an Orlicz function is a function M : [0,∞)→ [o,∞) which is continu-
ous, non-decreasing and convex with M(0) = 0,M(x) > 0, for x > 0 and M(x)→∞
as x→∞. If convexity of Orlicz function M is replaced by M(x+y) ≤M(x)+M(y)
then this function is called modulus function, introduced by Nakano[18] and further
discussed by Ruckle[12] and Maddox[13] and many others.
An Orlicz function M is said to satisfy ∆2− condition for all values of u, if there
exists a constant K > 0, such that M(2u) ≤ KM(u)(u ≥ 0). The ∆2− condition is
equivalent to M(`u) ≤ K`M(u), for all values of u and for ` > 1. Lindenstrauss and
Tzafriri[5] used the idea of Orlicz function to construct Orlicz sequence space

`M =

{
x ∈ w :

∞∑
k=1

M

( |xk|
ρ

)
<∞, forsomeρ > 0

}
. (1)

The space `M with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

( |xk|
ρ

)
≤ 1

}
(2)

becomes a Banach space which is called an Orlicz sequence space. For M(t) =
tp, 1 ≤ p < ∞, the space `M coincide with the classical sequence space `p· Given
a sequence x = {xk} its nth section is the sequence x(n) = {x1, x2, ..., xn, 0, 0, ...}
δ(n) = (0, 0, ..., 1, 0, 0, ...) , 1 in the nth place and zero’s else where; and s(k) =
(0, 0, ..., 1,−1, 0, ...) , 1 in the nth place,-1 in the (n+ 1)thplace and zero’s else where.
An FK-space (Frechet coordinate space) is a Frechet space which is made up of
numerical sequences and has the property that the coordinate functionals pk (x) =
xk (k = 1, 2, 3, . . .) are continuous. We recall the following definitions [see [15]].
An FK-space is a locally convex Frechet space which is made up of sequences and
has the property that coordinate projections are continuous. An metric-space (X, d)

is said to have AK (or sectional convergence) if and only if d
(
x(n), x

)
→ x as

n → ∞.[see[15]] The space is said to have AD (or) be an AD space if φ is dense in
X. We note that AK implies AD by [14].
If X is a sequence space, we define
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(i)X
′

= the continuous dual of X.
(ii)Xα = {a = (ak) :

∑∞
k=1 |akxk| <∞, foreachx ∈ X} ;

(iii)Xβ = {a = (ak) :
∑∞
k=1 akxk is convergent, foreachx ∈ X} ;

(iv)Xγ =
{
a = (ak) :

sup
n |

∑n
k=1 akxk| <∞, foreachx ∈ X

}
;

(v)Let X be an FK-space⊃ φ. Then Xf =
{
f(δ(n)) : f ∈ X ′

}
.

Xα, Xβ, Xγ are called the α−(or Kö the-T öeplitz)dual of X, β− (or generalized Kö
the-T öeplitz)dual of X, γ−dual of X. Note that Xα ⊂ Xβ ⊂ Xγ . If X ⊂ Y then
Y µ ⊂ Xµ, for µ = α, β, or γ.
Lemma 1. (See (15, Theorem7.27)) . Let X be an FK-space ⊃ φ. Then
(i)Xγ ⊂ Xf . (ii)If X has AK, Xβ = Xf . (iii)If X has AD, Xβ = Xγ .

2.Definitions and Prelimiaries

Let w denote the set of all complex double sequences x = (xk)
∞
k=1 and M : [0,∞)→

[0,∞) be an Orlicz function, or a modulus function. Let

χM =

{
x ∈ w : limk→∞

(
M

(
(k!|xk|)1/k

ρ

))
= 0forsomeρ > 0

)
,

ΓM =

{
x ∈ w : limk→∞

(
M

(
|xk|1/k
ρ

))
= 0forsomeρ > 0

)
and

ΛM =

{
x ∈ w : supk

(
M

(
|xk|1/k
ρ

))
<∞forsomeρ > 0

)
The space χM is a metric space with the metric

d (x, y) = inf

{
ρ > 0 : supk

(
M

(
(k! |xk − yk|)1/k

ρ

))
≤ 1

}
(3)

The space ΓM and ΛM is a metric space with the metric

d (x, y) = inf

{
ρ > 0 : supk

(
M

(
|xk − yk|1/k

ρ

))
≤ 1

}
(4)

Let `s denote the space of all those complex sequences x = {xk} such that
{x1, x1 + x2, x1 + x2 + x3, · · ·x1 + x2 + · · ·+ xk + · · ·} belongs to ` with the norm
‖x‖s = |x1|+ |x1 + x2|+ · · ·+ |x1 + x2 + · · ·+ xk|+ · · · ,

Γπ =
{
x = {xk} :

(
xk
πk

)
∈ Γ

}
and Λπ =

{
x = {xk} :

(
xk
πk

)
∈ Λ

}
.

Then Γπ and Λπ are FK-spaces with the metric d (x, y) = supk

{∣∣∣xk−ykπk

∣∣∣1/k : k = 1, 2, 3, · · ·
}
.

hπ =
{
x = {xk} :

(
xk
πk

)
∈ h

}
. Then hπ is a BK-space with the norm ‖x‖ =

∑∞
k=1 k

∣∣∣xkπk − xk+1

πk+1

∣∣∣ .
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(`∞)π = mπ =
{
x = {xk} ∈ w :

(
xk
πk

)
∈ m

}
, (c0)π =

{
x = {xk} ∈ w :

(
xk
πk

)
∈ c0

}
,

(c)π =
{
x = {xk} ∈ w :

(
xk
πk

)
∈ c
}
. In respect of mπ, (c0)π , cπ are BK-spaces with

the norm ‖x‖π = supk
∣∣∣xkπk ∣∣∣ ,

`π =
{
x = {xk} ∈ w :

(
xk
πk

)
∈ `
}
, `π is a BK-space with the norm ‖x‖ =

∑∞
k=1

∣∣∣xkπk ∣∣∣ .
We call (c0)π , cπ, `π,Λπ, hπ are rate spaces. [See [24]]

Let X be an BK-space. Then D = D (X) = {x ∈ φ : ‖x‖ ≤ 1} we do not assumethat
X ⊃ φ (i.e)D = φ

⋂
(unit closedsphere inX)

Let X be an BK space. A subset E of φ will be called a determining set
for X if D (X) is the absolutely convexhull of E. In respect of a metric space
(X, d) , D = {x ∈ φ : d (x, 0) ≤ 1} .

Given a sequence x = {xk} and an infinite matrix A = (ank) , n, k = 1, 2, · · · then
A− transform of x is the sequence y = (yn) where yn =

∑∞
k=1 ankxk (n, k = 1, 2, · · ·) .

Whenever
∑
ankxk exists.

Let X and Y be FK-spaces. If y ∈ Y whenever x ∈ X, then the class of all
matrices A is denoted by (X : Y ) .
Lemma 2. Let X be a FK-space and E is determining set for X. Let Y be an
FK-space and A is a infinite matrix. Suppose that either X has AK or A is row
finite. Then A ∈ (X : Y ) if and only if (1) The columns of A belong to Y and (2)
A [E] is a bounded subset of Y.

3.Main Results

Proposition 1. χM has AK, where M is a modulus function.

Proof: Let x = {xk} ∈ χM , but then

{
M

(
(k!|xk|)1/k

ρ

)}
∈ χ, and hence

supk≥n+1

(
M

(
(k!|xk|)1/k

ρ

))
→ as n→∞. Therefore

d
(
x, x[n]

)
= inf

{
ρ > 0 : supk≥n+1

(
M

(
(k! |xk|)1/k

ρ

))
≤ 1

}
→ 0asn→∞ (5)

⇒ x[n] → x as n→∞, implying that χM has AK. This completes the proof.

Proposition 2. Let
{
s(k) : k = 1, 2, 3, · · ·

}
be the set of all sequences in φ each of

whose non-zero terms ±. Let E =
{
s(k) : k = 1, 2, 3, · · ·

}
then E is a determining
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set for the space χM .
Proof: Step 1: Recall that χM is a metric space with the metric

d (x, y) = inf

{
ρ > 0 : supk

(
M

(
(k!|xk−yk|)1/k

ρ

))
≤ 1

}
Let A be the absolutely convex hull of E. Let x ∈ A. Then x =

∑m
k=1 tks

(k) with

m∑
k=1

|tk| ≤ 1ands(k) ∈ E (6)

Then d (x, 0) ≤ |t1| d
(
s(1), 0

)
+ |t2| d

(
s(2), 0

)
+ · · ·+ |t1| d

(
s(m), 0

)
. But d

(
s(k), 0

)
=

1 for k = 1, 2, 3, · · · ,m. Hence d (x, 0) ≤
∑m
k=1 |tk| ≤ 1 by using (6). Also x ∈ φ.

Hence x ∈ D. Thus we have
A ⊂ D (7)

step 2:Let x ∈ D.
⇒ x ∈ φ and d (x, 0) ≤ 1.
⇒ x = {x1, x2, · · · , xm} and

sup

{
M

(
(1! |x1|)1/1

ρ

)
,M

(
(2! |x2|)1/2

ρ

)
, · · · ,M

(
(m! |xm|)1/m

ρ

)
,

}
≤ 1 (8)

Case 1. Suppose that

M

(
(1!|x1|)1/1

ρ

)
≥M

(
(2!|x2|)1/1

ρ

)
≥ · · · ≥M

(
(m!|xm|)1/m

ρ

)

Let εi = sgn
(
M
(
(i!xi)
ρ

))
=

M

(
(i!|xi|)
ρ

)
(
M

(
(i!xi)
ρ

)) for i = 1, 2, 3, · · · ,m.

Take Sj = {ε2, ε2, · · · , εj , 0, 0, · · ·} for j = 1, 2, 3, · · · ,m.

Then Sj ∈ E for j = 1, 2, 3, · · · ,m. Also

x =

(
M

(
(1!|x1|)1/1

ρ

)
−M

(
(2!|x2|)1/2

ρ

))
s1+

(
M

(
(2!|x2|)1/2

ρ

)
−M

(
(3!|x3|)1/3

ρ

))
s2+

· · · +
(
M

(
(m!|xm|)1/m

ρ

)
−M

(
((m+1)!|xm+1|)1/m+1

ρ

))
sm = t1s1 + t2s2 + · · · + tmsm.

So that

11
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t1 + t2 + · · ·+ tm = M

(
(1!|x1|)1/1

ρ

)
−M

(
((m+1)!|xm+1|)1/m+1

ρ

)
= M

(
(1!|x1|)1/1

ρ

)
be-

cause M

(
((m+1)!|xm+1|)1/m+1

ρ

)
= .0

Therefore t1 + t2 + · · ·+ tm ≤ 1 by using (8). Hence x ∈ A. Thus we have D ⊂ A.

Case (ii): Let y be x and let M
(
(1!|y1|)
ρ

)
≥M

(
(2!|y2|)
ρ

)
≥ · · · ≥M

(
(m!|ym|)

ρ

)
Express y as a member of A as in case(i). Since E is invariant under permuta-
tion of the terms of its members, so is A. Hence x ∈ A. Thus D ⊂ A. Therefore in
both cases

D ⊂ A (9)

From (7) and (9) A = D. Consequently E is a determining set for χM . This completes
the proof.
Proposition 3. An infinite matrix A = (ank) is in the class

A ∈ (χM : (c0)π)⇔ limn→∞

(
ank
πn

)
= 0 (10)

⇔ supnk

∣∣∣∣an1 + · · ·+ ank
πn

∣∣∣∣ <∞. (11)

Proof:In Lemma 3. Take X = χM has AK property take Y = (c0)π be an FK-
space. Further more χM is a determining set E (as in given Proposition 4.2). Also

A [E] = A
(
s(k)

)
= {(an1 + an2 + · · ·)} . Again by Lemma 3. A ∈ (χM : (c0)π) if

and only if (i)The columns of A belong to (c0)π and (ii)A
(
s(k)

)
is a bounded subset

(c0)π . But the condition

(i)⇔
{
ank
πn

: n = 1, 2, · · ·
}

is exists for all k.

(ii)⇔ supn,k
∣∣∣an1+···+ankπn

∣∣∣ <∞.
Hence we conclude that A ∈ (χM : (c0)π) ⇔ conditions (10) and (11) are satisfied.
This is completes the proof.
Omitting the proofs, we formulate the following results:
Proposition 4. An infinite matrix A = (ank) is in the class

A ∈ (χM : cπ)⇔ limn→∞

(
ank
πn

)
exists(k = 1, 2, 3, ...) (12)

⇔ supnk

∣∣∣∣an1 + · · ·+ ank
πn

∣∣∣∣ <∞. (13)
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Proposition 5. An infinite matrix A = (ank) is in the class

A ∈ (χM : χM )⇔ supnk

M

(
n! |an1 + · · ·+ ank|1/n

)
ρ

 <∞. (14)

⇔ limn→∞

(
M

(
(n! |ank|)1/n

ρ

))
= 0, for k = 1, 2, 3, ... (15)

⇔ d (an1, an2, · · · , ank) is bounded (16)

for each metric d on χM and for all n, k.
Proposition 6. An infinite matrix A = (ank) is in the class

A ∈ (χM : `π)⇔
∞∑
n=1

|ank| converges(k = 1, 2, 3, ...) (17)

⇔ supnk

∞∑
n=1

∣∣∣∣ankπn
∣∣∣∣ <∞ (18)

Propositio n 7. An infinite matrix A = (ank) is in the class

A ∈ (χM : `s)⇔ supk

∞∑
n=1

|ank| <∞ (19)

Proposition 8. An infinite matrix A = (ank) is in the class

A ∈ (χM : Λπ)⇔ supnk


∣∣∣∣∣∣
k∑
γ=1

anγ
πn

∣∣∣∣∣∣
1/n
 <∞ (20)

⇔ d (an1, an2, · · · ank) is bounded (21)

for each metric d on Λπ and for all n, k.
Proposition 9. An infinite matrix A = (ank) is in the class

A ∈ (χM : hπ)⇔
{
ank
πn

: n = 1, 2, 3, · · ·
}
is exists for each k. (22)

⇔ supk

∞∑
n=1

∣∣∣∣an1 + an2 + · · ·+ ank
πn

− an+1,1 + an+2,2 + · · ·+ an+1,k

πn+1

∣∣∣∣ <∞
(23)
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