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UNIFORMLY STARLIKE AND CONVEX FUNCTIONS WITH
NEGATIVE COEFFICIENTS

A. T. OraDpIPO, D.O. MAKINDE AND D. BREAZ

ABSTRACT. Let A(w) be the class of analytic functions of the form:
[e.e]
f)=(G-w+ > alz—w
k=2

defined on the open unit disk U = {z : |z| < 1} normalized with f(w) =0, f'(w)—1 =
0 and w is an arbitrary fixed point in U. In this paper, we define a subclass of
w — a — uniform starlike and convex functions by using a more generalized form
of Ruschewey derivative operator. Several properties such as coefficient inequalities,
extremal and distortion theorem, radii of starlike, convexity and close-to-convexity,
convolution and integral operator are considered.

Keywords: Analytic, univalent, coefficient inequalities, extremal, distortion, con-
volution, integral operator, Ruscheweyh derivative, radii.

1. INTRODUCTION

Let A(w) be the class of analytic functions of the form(see [7]):
f(2)=(z—w) + ) ap(z —w)* (1)
k=2

defined in the open unit disk U = {z:|z| < 1}, normalized with f(w) = 0 and
f'(w) —1=0. Let S(w) denotes the subclass of A(w) consisting of functions that
are univalent in U and w is an arbitrary fixed point in U. Let S*(w, 5) and S¢(w, f)
be the classes of functions respectively w-starlike of order § and w-convex of order
B,(0 < 8 < 1) (see [10]). It is obvious to see that for w = 0 we have the usual class
of all analytic functions of the form f(z) = z + > 3o, axz®. A natural ” Alexander
relation” is preserved between the classes S*(w, 5) and S¢(w, 5) and they are closely
related to the ones defined by A.W. Goodman [5,6] except that, in our own case w
is an arbitrary fixed point in U.
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Let T'(w) be the subclass of S(w), consisting of functions of the form:
f(2)= (2 —w) = D lagl(z —w). (2)
k=2

This function 7T'(w) is called a function with negative coefficient with w arbitrarily
fixed in U. In this paper we wish to study the following classes of functions:

Definition 1.1 Let w be an arbitrary fixed point in U, let b £ 0, m € Ng,a >
0,0 < B8 < 1,1l > 0,A>0. We shall let M*(a,B,\,1,b) consist of functions
f € T'(w) satisfying the condition

1z - IPODFEN] . |1
Rl IO IG) ]> b IrNDI(2)

where IV (A, 1) denote the generalized Ruscheweyh derivatives which we are introduc-
ing here and is given as

1z =w)UZ D)

-1+ (3)

(2 — W)z — W)™ (A, D)™

ITODIG) = " (me No).
Note that if f is given by (2), then we see that
. [T+ Ak—1)+1
2001 = (- - 3 [P g - wf @
k=2
where A > 0,1 > 0,m >€ Ny and ¥(m, k) = (IHzfl).

This family of functions, that is M*(«, 8, A,[,b) contains many well known as
well as new classes of analytic univalent functions. With various special choices
of parmeters involved, classes such as My* (o, 5, 1) = M{(a, B)(m = n) class of
functions studied by Al Shagsi and Darus (see [3]), Mg (a, 8,A,0,1) = U(k, A, B3)
is the class of functions studied by Shanmugan et al (see [13]), M{(«,0,0,0,1) =
a— ST, M}(a,0,1,0,1) = a — U C V respectively, the class of a-uniformly starlike
function and a-uniformly convex function introduced and studied by Kannas and
Wisniowska (see [8,9]), the classes M2(0,0,0,0,1) = S*(w) and M2(0,0,0,0,1) =
S¢(w) are respectively the classes of starlike and convex functions introduced and
studied by Kannas and Ronning (see [7]), Acu and Owa (see [1]) and Aouf et al (see
[4]). If w is an arbitrary fixed point in U, and with various special choices of other
parameters involved, many new clsses shall be obtained. As earlier said, in this paper
we provide necessary and sufficient conditions such as coefficient bound, extreme
point, radius of w-close-to-convexity, w-starlike and w-convexity for functions in
M7 (e, B, A, 1,b). Such inclusion involving Hadamard product (or convolution) and
integral operator are also considered. Throughout this work we shall take |w| = d
(see [7], [2], [14]).
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2. COEFFICIENT INEQUALITY

Theorem 2.1 Let f be given by (2) then, f € M (o, B, A, 1,b) if and only if

D (r+ )Rk, A D)W (m, k) [k — b8 + a(k — b)]|ax| < b(1 - B). (5)
k=2
where a, \,1 >0, b > 0 (positive real), m € Ny, 0 < < 1, |w| =d and
o A1) = MDD gy = (P,
141 m

Proof: We would like to employ the technique adopted by Aglan et al (see [2])
to find the coefficient estimates for our class. We have f € M7 («a, 8, A, 1, ) if the
condition (3) is satisfied. We claim the following fact

Re(y) > aly — 1|+ 8 e [y(1 + ae?) —ae] > 8, -7 <6 <.
Based on the above, equation (3) may be written as

)
e L= DIC)

b IR(ADf(2)

(1 + ey — aew] =

MR act) — baeP I ] 5 5 (6)

bIF (A1) f(2)
Next, we let
A(z) = (2 =S DF (R (14 ae”) = bae I (A1) f (2), B(2) = bIT (A D (2).
Then (6) is equivalent to |A(z) + (1+ 8)B(z)| > |A(z) — (1+8)B(2)| for 0 < g < 1.

For A(z) and B(z) as in above, we have

A(z)+ (1= P)B(2)

> [L+6(1- ) +a(l - ]|z o]

_i [T+ Xk —1)+1

T ](I)(m,k)[k—i—b(l—B)—i—a(k—b)ﬂakHz—w}k

k=2 -

and similarly,

]A(z) 1+ 8)B()

< [1-b1-8)+a(l-b)]z—w|-
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D {HA(k— 1) +l]¢(m,k)[k—b(l = B)+alk=)lal]z —wl.

P 141
Therefore,
|A(2) + (1 = B)B(2)| = |A(2) = (1 + B)B(2)| >
2(1—B) ~ 23 (r+d)"! F Lk “}q»(m, B) [k — 08 + alk — b)]lax,
k=2

which yeild (5).
On the other hand,we must have
1(z = w)[L7 (N D ()]

) 0 60
Re[b O (2) (1+ae )—ae } > f

On choosing the values of z on the positive real axis where 0 < |z —w| = (r+d) < 1
the above inequality reduces to

r[1-b+aci? (1-b)] (r+d) - f;Q {71““1—1)“} B(m,k) [k—bB+act® (kb)) |ak|(r+d)k:|

Re > 0.

L b(r+d)—b z (M) (m,k)|ag| (r+d)*
Since Re(—e®) > —|e?| = —1 the above inequality reduces to

[ (1=bB+a(1-b)(r+d)—32, [W}@(m,k) [k—bB+a(k—b)] lax|(r+d)*

Re

} >0,
i b(r+d)—372, [%jwé(m,wau(wﬂ

On setting ¥(k, A\, [) = (%ﬁl)”), we have the required result, and the result
is sharp with the extremal function f given by

b(1 - B)

(r + d)F 1 (m, k) U (k, X, 1) [k — bB + a(k — b)] (-0t ()

flz) =(z-w) -

Our next result is on the growth and distortion theorems.
Theorem 2.2 Let the function f defined by (2) be in the class M («, 5, A, 1,b).
Then for |z — w| = r 4+ d, we have

b(1 - B)
(m+1)T(2,\0)[2-b8+a(2- b)}

(r+d)— (r+d) <|f(z)| <

b(1 - )
(m+1)¥(2,\1)[2 b8+ (2 - )]

(r+d)+ (r+d) (8)
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where W(2,\, 1) = H)‘H Equality holds for the function

b(1 - B)
(m+ 1)U (2,\0)[2-b8+a2—1b)](r+d)

f(z) = (z—w) - (2 —w)*. (9)

Proof: Let us take the proof of the right hand side inequality in (8), because
similar argument we would use for the first part is applicable to the other side.

> b(—B)
E:m“fg@n+1muzxnp—hﬁ+a@—bﬂ

k=2
Since f(2) = (2 — w) — é x| (2 — w)k
1)) = |z —w[ =Y larl|z —w]" < (r+d)+ D larl(r+d)F
k=2 k=2

b(1 - p)
(m+1)[2=b8+ (2 —0)]¥(2,A1)

< (r+d)+(r+d)2ilakl < (r+d)+ (r+d)

k=2
which yeilds the right hand side of (8).
By using the technique of Theorem 2.2, we give the distortion theorem.
Theorem 2.3 Let the function f defined by (2) be in the class M («, 5, A, 1, b).
Then forlz - w‘ = (r +d) we have

1= (m+1)®(2,\,1)[2, b5 + (2 —b)] —

b(1 - B)

S T DY@ A2 - B + a2 - )]

Equality holds for function given by (9).
Theorem 2.4 f € M (o, B, \,1,b), then f € ST*(vy), where

b(k —1)(1—p)
(r + d)F 10 (k, A, )®(m, k) [k — b8 + a(k — b) — b(1 — B)]

y=1-

Proof: 1t is sufficient to show that (5) implies

o0

Zr—l—dk Yk —y)|ap] < 1-7
k=2
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that is
k—~ < (r+d)k_1\1'(k:, A D®(m, k) [k—bﬁ+a(k—b)]
l—y — b(1 - B)

then
e bk~ 1)(1 - B)

(r + d)F=1W (k, A, )®(m, k) [k — b5 + a(k — b)]

The above inequality holds true for m € Ny, k> 2 «, 5,1 >0, b >0, 0< 5 <1
and |w| = d. Also,

14 Ak — 1) +1
141

U(k,\ 1) =

k -1
, and ®(m,k) = ( tm )
m

Our next result is on the extreme points.

Theorem 2.5 Let fi(z) = (z —w) and

b(1 - B)

(r + )1V (k, N\, 1)@(m, k) [k — b3 + a(k — b)] (z—w)k, k<2

fi(z) = (z —w) =

Then f € M («a, B, A, 1,b), if and only if it can be represented in the form
F) = mfe(2), (e >0, Y e =1). (10)
k=1 k=1
Proof. We suppose f(z) can be expressed as in (10). Then

F(2) =) mefr(z) = mfi(z) + Y pefulz) =
k=1 =2

= b(1 — B) _
pfi(z) + ; [(73 —w) - (r + d)F=10(k, A, )®(m, k) [k — bB + ok — b)]] N

00 [e'e) b(1—
(2 —w) 4+ 32520 (2 —w) = D240 pk |:(r+d)k1\ll(k,)\,l)‘(1>(mb,)l)c) TbAratoD)] 2 w)k] =

.- b(1—p)
(z=w) = ;; HE [(r T W 1D k) — BB+ alk =] “’)k]
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Thus

N b(1 - )
) kzz“k<<r A D ORIt

" ((r + d)F Wk, N\ D)@ (m, k) [k — b8 + ak — b)])

b(1 - p)
o o0
= =Y - pm=1-m<1
k=2 k=1

So by Theorem 2.1, f € M («, 3, \,1,b).
For the converse, suppose f € M («, 3, A, 1,b). Since

b(1 - B)

|ak| < (’I” ¥+ d)k_l\I/(k, A, l)(I)(m’ k‘)[k — bﬁ + Oé(k - 5)] =
and also we may set
k—1 — -
e (r+d)" (kA D)@(m, k) [k — 0B + a(k — B)] lag|, k> 2

b(1 - p)

o0
and p=1— > pg. Then
k=2

fR)=(z=w) =) ax(z —w)* = (z —w)-
k=2

b(1—p)

;“’“ (r + 1T (k, X, ))®(m, k)[k — b8 + a(k — B)]

k

(z —w)
=(z—w) =Y m[z-w)— fi(2)] =(z—w) =D mlz—w)+ > pfr(2)
=2 k=2 =2

= pf1(z) + Zﬂkfk(z) = Z/‘kfk(z)
k=2 k=1
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Corollary A. The extreme points of M/ («, 3, A,1,b) are the functions
fi(z) = (z —w) and

b(1 - B)
(r + A1 (k, A, D)@ (m, k)[k — b5 + a(k — )]

(z —w) — (z—w)* k>2
Our next results are on radii of close-to-convexity, starlikeness and convexity.
A function f € M7 («, 5, \,1,b) is said to be w-close-to-convex of order 7 if it
satisfies Re[f'(z)] > 7, (0 < 7 < 1, z € U, w is an arbitrary fixed point in U).
Also a function f € M7 («, B, \, 1, b) is said to be w-convex of order 7 if and only
if (z — w)f/(2) is w-starlike of order 7, that is if
(2 —w)f"(2)
Re[1+ >7 (0<7<1, z€U).
7:) ( :
Theorem 2.6 Letf € M («, B8, \,1,b). Then f is w-close-to convex of order T
in |z —w| < Ry, where

Ry = inf
k>2

(1= 7)(r + d)* 1 (k, X, 1)®(m, k) [k — b + a(k — b)]]F1
| =) |

Proof. Tt is sufficient to show that |f/(z) — 1| <1 —7 for |z —w| < R;. We have
[e.e] [e.e]
|f’(z) - 1‘ = ‘ - Zkzak(z - w)k_l‘ < Zkzak(z —w)k L
k=2 k=1

Thus |f'(z) = 1| < 1 —7if

S (75 )l e <1 )

k=2

But Theorem 2.1 confirms that

00 r k—1 m — (K —
I e
k=2

Hence (11) will be true if

klz — w|Ft - (r + d) 1 (k, X\, )®(m, k)[k — b8 + a(k — B)]
1—7 - b(1—p5) '

We obtain

(1 — 7)(r + d)* 1 (k, X, 1)®(m, k) [k — b + a(k — b)]]F1
kb(1 — )

2w <

264



A. T. Oladipo, D.O. Makinde and D. Breaz - Uniformly starlike and convex...

as required.

Theorem 2.7 Let f € M («, B, \,l,\,b). Then f is w-starlike of order T in
|z —w| < Ry where

R2=hﬁ{u_Txr+dﬁ*w@w&U¢Wu@%—bﬁ+a%—bﬂrh

k>2 b(k—71)(1—p)
Proof. We have to show that % — 1‘ < 1—r7 for |z —w| < Rs.
We have
R W)t
f(z) =300 an(z —w)kt
00 -1 _ k—1
1= ks lal|z — wl
Hence (13) holds true if
Yk =Dlagllz =l < (1 =7)[1 =Y Jaxllz = w*]
k=2 k=2
or equivalently to say
(k-0 _
3 (m>\akHz Wl <, (14)

k=2

Hence, by (12), (14) will be true if

(ﬂ)b et T d)F W (k, A, 1) (m, k) [k — bB + a(k — B)]

1-6 b(1 - p)
or if
< [A =D+ PR A DB(m, k) [k — b3+ a(k — b)] =
. ‘S[ bk —)(1 - ) ] k=2

which complete the proof.

Theorem 2.8 Let f € M («, 5, A\, 1,b). Then f is convez of order T in |z —w| <
R3, where

R3 = inf
k>2

[(1 ) 4 AN, A\, DB (m, k) [k — b8+ alk — b)q =
bk —7)(1 - B) '
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Proof: By using the same method of proof as in Theorem 2.7 we can show that

(2= )"
Fe)

<1-7(0<7<1)for|z—w| < Ra,

with the support of Theorem 2.1 Thus we have the required result.
Our next result is on inclusion theorem which involves the modified Hadamard
products. For every function of the form

o

fi(2) = (z=w) = Y laggl (z —w)* (j=1,2) (15)

k=2

in the class A(w), we define the w-modified Hadamard product (f1 * f2)(z) of fi(2)
and fa(z) given by

f1(2) * fa(2) E:kleakﬂ 2 —w)

With the above statements, we can prove the following:
Theorem 2.9 Let the functions fj(z) (j = 1,2) given by (15) be in the class
Muq;n(a? 57 )‘7 la b) Then (fl * fQ)(Z) € Mz;n(a7 67 )\7 la b)7

b(1-B)*(2-B)(1+a)
(r+d)¥2,\0)(m+1)[2-b8+a(2-0)]2—0b%(1-73)?
where WU(2,\,1) = 11}”.
Proof: By making use of the technique of Schild and Silverman [12], we need to
find the largest psuch that

p=1-

i (r+d)* =1 (k, \,)®(m, k) [k — b3 + a(k — b)]

|lak1]lak 2| <1
k=0 b(l - 90)

since fj(z) € MJ' (o, B, A, 1,0)  (j= 1,2), then we have

lag1] <1

53&+dV*W%JJ@Om@%—bﬂ+a®—M]
‘ b(1 - )

and

(AR, DO (m, k)[k — b3 + a(k — b))
22 Ml—m

lag2| <1
e

[e=]
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by the Cauchy-Schwarz inequality, we have

00 r k—1 m — alr —
Z( +d) \If(k,A,Z)%_,Z;[k b8 + a(k —b)] ] lane] < 1

k=0

Thus it is sufficient to show that

. (r + d)F Wk, N, D®(m, k) [k — b3 + alk — b)]
S T |ak,1] |a 2]
k=0
0o r k—1 m — a(rR —
NS +d) \ll(k,A,l);Izi _,g;[k b + ok b)]\/m (k=2)
k=0
that is,
el gl < A= @)= b8+ alk —b)
w2 = T8 k= b8+ alk — b))
note that

a1 [ak,2| < — b(1 - P)
(r +d)F=10(k, X\, )®(m, k)[k — b5 + a(k — b)]

Consequently, we need only to show that

b(1—p) (1—¢)k — b5+ ok — b)]

(1 OF 10 (e N D@ (m B[k — b8 + alk —0)] = (1—B)k — b8 + alk —b)] (k> 2)
or, equivalently, that
b(1 = B)*(k —b)(a+1)
psl- (r + )10 (k, X\, )®(m, k)[k — b8 + a(k — b)]2 — b2(1 — )2 (k>2)
Alk) =1 - b(L — B)*(k — b)(a + 1) s o)

(r +d)F= 10 (k, A\, 1)®(m, k)[k — b8 + a(k — b)]2 — b2(1 — 3)2
is an increasing function k£ (k > 2), letting k£ = 2 in last equation, we obtain

b(1—B)%(k —b)(a+1)
(r 4+ d)F=10 (k, X\, 1)®(m, k) [k — b6 + a(k — b)]2 — b2(1 — ()2

p<A(2)=1-

where I1(2,\,1) = 1"1'5;?'[ and this complete the proof.
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The next result is on convolution and integral operators. Let f(z) be defined by
(2), and suppose that

[e.e]

9(z) = (z —w) = ) lexl (z —w)"*

k=2

Then, the Hadamard product (or convolution) of f(z) and g(z) defined by
(25 9(2) = (F % 9)(2) = (2 — ) Z|ak| ekl (2 — w)F
Theorem 2.10. Let f(z) € M («, 5, A, 1,b), and
9(2) = (z —w) = i lerl (2 =) (0 < fex| < 1).

Then f*ge M (c, B, 1,b)

Proof: In view of Theorem 2.1, we have

S+ @)F Wk, A D)B(m, k)[E — b + alk — b)] lag] ex
k=2
i”d’“ (ke A, ) (m, k)[k — b3 + a(k — b)] || < b(1 — B)
k=2

Theorem 2.11: Let f € M («a,5,\,1,b) and let p be real number such that
p > —1, then the function

p+1

PO =0

RGO

also belongs to the class M (c, 5, A\, 1, b).
Proof: From the representation of f(z), it follows that

F(z) = (2= w) = 3 1Akl (= — w)*
k=2

where Ay, = (%) ‘ak‘. Since p > —1, then0 < Ay, < |ag|. Which in view of Theorem

2.1, F € M™(a, B,\,1,b).
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