Acta Universitatis Apulensis

No. 30/2012
ISSN: 1582-5329

pp. 221-235

DIFFERENTIAL SANDWICH THEOREMS FOR P-VALENT FUNCTIONS RELATED TO CERTAIN OPERATOR

A. O. Mostafa

ABSTRACT. In this paper we obtain some subordination and superordination results for p-valent functions by using a certain operator.

2000 Mathematics Subject Classification:30C45.

1. Introduction

Let H(U) denotes the class of analytic functions in the open unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$ and let H[a,p] denotes the subclass of the functions $f \in H(U)$ of the form:

$$f(z) = a + a_p z^p + a_{p+1} z^{p+1} + \dots \quad (a \in \mathbb{C}; \ p \in \mathbb{N} = \{1, 2, \dots\}).$$

Also, let A(p) be the subclass of the functions $f \in H(U)$ of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \quad (p \in \mathbb{N}), \tag{1.1}$$

and set $A_1 \equiv A(1)$.

For $f, g \in H(U)$, we say that the function f is subordinate to g, or the function g is superordinate to f, if there exists a Schwarz function w, i.e. $w \in H(U)$ with w(0) = 0 and |w(z)| < 1, $z \in U$, such that f(z) = g(w(z)) for all $z \in U$. This subordination is usually denoted by $f(z) \prec g(z)$.

It is well-known that, if the function g is univalent in U, then $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(U) \subset g(U)$.

Supposing that h and g are two analytic functions in U, let

$$\varphi(r, s, t; z) : \mathbb{C}^3 \times \mathcal{U} \to \mathbb{C}.$$

If h and $\varphi(h(z), zh'(z), z^2h''(z); z)$ are univalent functions in U and if h satisfies the second-order superordination

$$g(z) \prec \varphi(h(z), zh'(z), z^2h''(z); z),$$
 (1.2)

then g is called to be a solution of the differential superordination (1.2). A function $q \in H(U)$ is called a subordinant of (1.2), if $q(z) \prec h(z)$ for all the functions h satisfying (1.2). A univalent subordinant \tilde{q} that satisfies $q(z) \prec \tilde{q}(z)$ for all of the subordinants q of (1.2), is said to be the best subordinant.

Recently, Miller and Mocanu [14] obtained sufficient conditions on the functions q, q and φ for which the following implication holds:

$$g(z) \prec \varphi(h(z), zh'(z), z^2h''(z); z) \Rightarrow g(z) \prec h(z).$$

Using the results of Miller and Mocanu [14], Bulboača [6] considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [7]. Ali et al. [1], have used the results of Bulboača [6] to obtain sufficient conditions for normalized analytic functions to satisfy:

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),$$

where q_1 and q_2 are given univalent normalized functions in U.

Very recently, Shanmugam et al. ([18], [19] and [20]) obtained the such called sandwich results for certain classes of analytic functions. Further subordination results can be found in [17] and [21].

For f given by (1.1) and $g \in A(p)$ defined by $g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k$, the Hadamard product or (convolution) is defined by

$$(f * g)(z) = z^p + \sum_{k=p+1}^{\infty} a_k b_k z^k = (g * f)(z).$$
(1.3)

Using the convolution and for $\lambda \geq 0, l \geq 0, p \in \mathbb{N}, m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, we define the linear operator $D^m_{p,l,\lambda}(f*g): A(p) \to A(p)$ by:

$$D_{p,l,\lambda}^{0}(f * g)(z) = (f * g)(z);$$

$$D_{p,l,\lambda}^{1}(f * g)(z) = D_{p,l,\lambda}(f * g)(z) = (1 - \lambda)(f * g)(z) + \frac{\lambda}{(p+l)z^{l-1}} \left(z^{l}(f * g)(z)\right)'$$

$$= z^{p} + \sum_{k=p+1}^{\infty} \left(\frac{p+l+\lambda(k-p)}{p+l}\right) a_{k}b_{k}z^{k};$$

$$D_{p,l,\lambda}^{2}(f * g)(z) = (1 - \lambda)D_{p,l,\lambda}(f * g)(z) + \frac{\lambda}{(p+l)z^{l-1}} \left(z^{l}D_{p,l,\lambda}(f * g)(z)\right)'$$

$$= z^{p} + \sum_{k=p+1}^{\infty} \left(\frac{p+l+\lambda(k-p)}{p+l}\right)^{2} a_{k}b_{k}z^{k}$$

and (in general)

$$D_{p,l,\lambda}^{m}(f*g)(z) = (1-\lambda)D_{p,l,\lambda}^{m-1}(f*g)(z) + \frac{\lambda}{(p+l)z^{l-1}} \left(z^{l}D_{p,l,\lambda}^{m-1}(f*g)(z)\right)'$$
$$= z^{p} + \sum_{k=p+1}^{\infty} \left(\frac{p+l+\lambda(k-p)}{p+l}\right)^{m} a_{k}b_{k}z^{k}.$$
(1.4)

From (1.4), we can easily deduce that

$$\lambda z \left(D_{p,l,\lambda}^m(f * g)(z) \right)' = (p+l) D_{p,l,\lambda}^{m+1}(f * g)(z) - \left[p(1-\lambda) + l \right] D_{p,l,\lambda}^m(f * g)(z) \ (\lambda > 0). \tag{1.5}$$

We remark that:

(i) For $b_k = 1$ or $g(z) = z^p (1-z)^{-1}$ we have $D^m_{p,l,\lambda}(f*g)(z) = I^m_p(\lambda,l)f(z)$, where the operator $I^m_p(\lambda,l)$ was introduced and studied by Catas [9] which contains intern the operators D^m_p (see [5] and [11]) and D^m_λ (see [2]);

(ii) For
$$b_k = \frac{(\alpha_1)_{k-p}...(\alpha_q)_{k-p}}{(\beta_1)_{k-p}...(\beta_s)_{k-p}(1)_{k-p}}$$
, the operator $D^m_{p,l,\lambda}(f*g)(z) = I^{m,l}_{p,q,s,\lambda}(\alpha_1,\beta_1)f(z)$, where the operator $I^{m,l}_{p,q,s,\lambda}(\alpha_1,\beta_1)$ was introduced and studied by El-Ashwah and

where the operator $I_{p,q,s,\lambda}^{m,l}(\alpha_1,\beta_1)$ was introduced and studied by El-Ashwah and Aouf [10], $\alpha_1,\alpha_2,...,\alpha_q$ and $\beta_1,\beta_2,...,\beta_s$ are real or complex numbers $(\beta_j \notin Z_0^- = \{0,-1,-2,...\}; j=1,2,...,s) (q \leq s+1; s,q \in N_0)$ and

$$(d)_k = \left\{ \begin{array}{ll} 1 & (k=0; d \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}) \\ d(d+1)...(d+k-1) & (k \in \mathbb{N}; d \in \mathbb{C}). \end{array} \right.$$

Also, for many special operators of the operator $I_{p,q,s,\lambda}^{m,l}(\alpha_1,\beta_1)$ see [10];

(iii) For m=0 and $b_k=\frac{\Gamma(p+\alpha+\beta)\Gamma(k+\beta)}{\Gamma(p+\beta)\Gamma(k+\alpha+\beta)}$, the operator $D^m_{p,l,\lambda}(f*g)(z)=Q^\alpha_{p,\beta}f(z)$ ($\alpha\geq 0, \beta>-1, p\in\mathbb{N}$), where the operator $Q^\alpha_{p,\beta}$ was introduced by Liu and Owa [12].

2. Definitions and Preliminaries

To prove our results we shall need the following definition and lemmas.

Definition 1 [14]. Let Q be the set of all functions f that are analytic and injective on $\overline{\mathbb{U}} \setminus E(f)$, where

$$E(f) = \{ \zeta \in \partial \mathbf{U} : \lim_{z \to \zeta} f(z) = \infty \},$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

Lemma 1[13]. Let q be univalent in the unit disc U, and let θ and φ be analytic in a domain D containing q(U), with $\varphi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) = zq'(z)\varphi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$ and suppose that

(i) Q is a starlike function in U,

(ii) Re
$$\frac{zh'(z)}{Q(z)} > 0$$
, $z \in U$.

If p is analytic in U with p(0) = q(0), $p(U) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\varphi(p(z)) \prec \theta(q(z)) + zq'(z)\varphi(q(z)), \tag{2.1}$$

then $p(z) \prec q(z)$, and q is the best dominant of (2.1).

Lemma 2 [18]. Let $\mu, \gamma \in C$ with $\gamma \neq 0$, and let q be a convex function in U with

$$\operatorname{Re}\left(1+\frac{zq''(z)}{q'(z)}\right) > \max\left\{0; -\operatorname{Re}\frac{\mu}{\gamma}\right\}, \ z \in U.$$

If p is analytic in U and

$$\mu p(z) + \gamma z p'(z) \prec \mu q(z) + \gamma z q'(z), \qquad (2.2)$$

then $p(z) \prec q(z)$, and q is the best dominant of (2.2).

Lemma 3 [8]. Let q be a univalent function in the unit disc U and let θ and φ be analytic in a domain D containing q(U). Suppose that

(i) Re
$$\frac{\theta'(q(z))}{\varphi(q(z))} > 0$$
 for $z \in U$,

(ii) $h(z) = zq'(z)\varphi(q(z))$ is starlike in U.

If $p \in H[q(0), 1] \cap \mathcal{Q}$ with $p(U) \subseteq D$, $\theta(p(z)) + zp'(z)\varphi(p(z))$ is univalent in U, and

$$\theta(q(z)) + zq'(z)\varphi(q(z)) \prec \theta(p(z)) + zp'(z)\varphi(p(z)), \tag{2.3}$$

then $q(z) \prec p(z)$, and q is the best subordinant of (2.3).

Note that this result generalize a similar one obtained in [7].

Lemma 4 [14]. Let q be convex in U and let $\gamma \in C$, with $\text{Re}\{\gamma\} > 0$. If $p \in H[q(0), 1] \cap Q$ and $p(z) + \gamma z p'(z)$ is univalent in U, then

$$q(z) + \gamma z q'(z) \prec p(z) + \gamma z p'(z), \tag{2.4}$$

implies $q(z) \prec p(z)$, and q is the best subordinant (2.4).

This last lemma give us a necessary and sufficient condition for the univalence of a special function which will be used in some particular cases:

Lemma 5 [16]. The function $q(z) = (1-z)^{-2ab}(a, b \in C^*)$ is univalent in U if and only if $|2ab-1| \le 1$ or $|2ab+1| \le 1$.

3. Subordination results

Unless otherwise mentioned, we assume throughout this paper that $\lambda > 0, l \ge 0, p \in \mathbb{N}, m \in \mathbb{N}_0$ and the powers are considered principle values.

Theorem 1. Let q be univalent in U, with q(0) = 1, and suppose that

$$\operatorname{Re}\left(1 + \frac{zq''(z)}{q'(z)}\right) > \max\left\{0; -\frac{p+l}{\lambda p}\operatorname{Re}\frac{1}{\delta}\right\}, \ z \in \mathcal{U},\tag{3.1}$$

where $\delta \in C^*$. If $f \in A(p)$ satisfies the subordination

$$\frac{\delta}{p} \left(\frac{D_{p,l,\lambda}^{m+1}(f * g)(z)}{z^p} \right) + \frac{p - \delta}{p} \left(\frac{D_{p,l,\lambda}^{m}(f * g)(z)}{z^p} \right) \prec q(z) + \frac{\delta \lambda pzq'(z)}{p+l}, \quad (3.2)$$

then

$$\frac{D_{p,l,\lambda}^m(f*g)(z)}{z^p} \prec q(z),$$

and q is the best dominant of (3.2).

Proof. Let

$$K(z) = \frac{D_{p,l,\lambda}^m(f * g)(z)}{z^p} \ (z \in U), \tag{3.3}$$

then, differentiating (3.3) logarithmically with respect to z, and using the identity (1.5), we have

$$\frac{D_{p,l,\lambda}^{m+1}(f*g)(z)}{z^p} = K(z) + \frac{z\lambda K'(z)}{p+l}.$$

A simple computation shows that

$$\frac{\delta}{p} \frac{D_{p,l,\lambda}^{m+1}(f*g)(z)}{z^p} + \frac{p-\delta}{p} \frac{D_{p,l,\lambda}^{m}(f*g)(z)}{z^p} = K(z) + \frac{\delta \lambda z K'(z)}{p(p+l)},$$

hence the subordination (3.2) is equivalent to

$$K(z) + \frac{\delta \lambda z K'(z)}{p(p+l)} \prec q(z) + \frac{\delta \lambda z q'(z)}{p(p+l)}.$$

Now, applying Lemma 2, with $\mu=1$ and $\gamma=\frac{\delta\lambda}{p(p+l)},$ the proof of Theorem 1 is completed.

Taking $q(z) = \frac{1+Az}{1+Bz}$ ($-1 \le B < A \le 1$) in Theorem 1, the condition (3.1) reduces to

$$\operatorname{Re} \frac{1 - Bz}{1 + Bz} > \max \left\{ 0; -\frac{p(p+l)}{\lambda} \operatorname{Re} \frac{1}{\delta} \right\}, \ z \in U.$$
 (3.4)

It is easy to check that the function $\varphi(\zeta) = \frac{1-\zeta}{1+\zeta}$, $|\zeta| < |B|$, is convex in U, and since $\varphi(\overline{\zeta}) = \overline{\varphi(\zeta)}$ for all $|\zeta| < |B|$, it follows that the image $\varphi(U)$ is a convex domain symmetric with respect to the real axis, hence

$$\inf \left\{ \operatorname{Re} \frac{1 - Bz}{1 + Bz} : z \in \mathcal{U} \right\} = \frac{1 - |B|}{1 + |B|} > 0 \tag{3.5}$$

and the inequality (3.3) is equivalent to

$$\frac{p(p+l)}{\lambda} \operatorname{Re} \frac{1}{\delta} \ge \frac{|B|-1}{|B|+1},$$

hence we obtain the following corollary.

Corollary 1. Let $-1 \le B < A \le 1$ and $\delta \in C^*$ with

$$\frac{1-|B|}{1+|B|} \geqslant \max\left\{0; -\frac{p(p+l)}{\lambda}\operatorname{Re}\frac{1}{\delta}\right\}.$$

If $f \in A(p)$, and

$$\frac{\delta}{p} \frac{D_{p,l,\lambda}^{m+1}(f * g)(z)}{z^p} + \frac{p - \delta}{p} \frac{D_{p,l,\lambda}^{m}(f * g)(z)}{z^p} \prec \frac{1 + Az}{1 + Bz} + \frac{\delta\lambda}{p(p+l)} \frac{(A - B)z}{(1 + Bz)^2}, \quad (3.6)$$

then

$$\frac{D^m_{p,l,\lambda}(f*g)(z)}{z^p} \prec \frac{1+Az}{1+Bz},$$

and $\frac{1+Az}{1+Bz}$ is the best dominant of (3.6).

For p = A = 1 and B = -1 in Corollary 1, we have:

Corollary 2. Let $\delta \in C^*$ with $\frac{p+l}{\lambda} \operatorname{Re} \frac{1}{\delta} \geq 0$. If $f \in A_1$, and

$$\delta\left(\frac{D_{l,\lambda}^{m+1}(f*g)(z)}{z}\right) + (1-\delta)\left(\frac{D_{l,\lambda}^{m}(f*g)(z)}{z}\right) \prec \frac{1+z}{1-z} + \frac{2\delta\lambda z}{(1+l)(1-z)^2}, (3.7)$$

then

$$\frac{D_{l,\lambda}^m(f*g)(z)}{z} \prec \frac{1+z}{1-z}$$

and $\frac{1+z}{1-z}$ is the best dominant of (3.7).

Theorem 2. Let q be univalent in U, with q(0) = 1 and $q(z) \neq 0$ for all $z \in U$. Let $\gamma, \mu \in C^*$ and $\nu, \eta \in C$, with $\nu + \eta \neq 0$. Let $f \in A(p)$ and suppose that f and q satisfy the conditions:

$$\frac{\nu D_{p,l,\lambda}^{m+1}(f*g)(z) + \eta D_{p,l,\lambda}^{m}(f*g)(z)}{(\nu+\eta)z^{p}} \neq 0, \ z \in U, \tag{3.8}$$

and

$$\operatorname{Re}\left(1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right) > 0. \tag{3.9}$$

If

$$1 + \gamma \mu \left[\frac{\nu z \left[D_{p,l,\lambda}^{m+1}(f * g)(z) \right]' + \eta z \left[D_{p,l,\lambda}^{m}(f * g)(z) \right]'}{\nu D_{p,l,\lambda}^{m+1}(f * g)(z) + \eta D_{p,l,\lambda}^{m}(f * g)(z)} - p \right] \prec 1 + \gamma \frac{z q'(z)}{q(z)}, \quad (3.10)$$

then

$$\left\lceil \frac{\nu D_{p,l,\lambda}^{m+1}(f*g)(z) + \eta D_{p,l,\lambda}^m(f*g)(z)}{(\nu+\eta)z^p} \right\rceil^{\mu} \prec q(z),$$

and q is the best dominant of (3.10).

Proof. Let K(z) given by (3.3), then K(z) is analytic in U, differentiating K(z) logarithmically with respect to z, we get

$$\frac{zK'(z)}{K(z)} = \mu \left\{ \frac{\nu z [D_{p,l,\lambda}^{m+1}(f*g)(z)]' + \eta z [D_{p,l,\lambda}^{m}(f*g)(z)]'}{\nu D_{p,l,\lambda}^{m+1}(f*g)(z) + \eta D_{p,l,\lambda}^{m}(f*g)(z)} - p \right\}.$$

Now, using Lemma 1 with $\theta(w) = 1$ and $\varphi(w) = \frac{\gamma}{w}$, then θ is analytic in \mathbb{C} and $\varphi(w) \neq 0$ is analytic in \mathbb{C}^* . Also if we let

$$Q(z) = zq'(z)\varphi(q(z)) = \gamma \frac{zq'(z)}{q(z)},$$

and

$$h(z) = \theta(q(z)) + Q(z) = 1 + \gamma \frac{zq'(z)}{q(z)},$$

then, Q(0) = 0 and $Q'(0) \neq 0$, and the assumption (3.9) yields that Q is a starlike function in U and

$$\operatorname{Re} \frac{zh'(z)}{Q(z)} = \operatorname{Re} \left\{ 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} \right\} > 0 \ (z \in U),$$

and then, by using Lemma 1, we deduce that the assumption (3.10) implies $K(z) \prec q(z)$ and the function q is the best dominant of (3.10).

Taking $\nu=0,\,\eta=1,\,\gamma=1$ and $q(z)=\frac{1+Az}{1+Bz}$ in Theorem 2, it is easy to check that the assumption (3.9) holds whenever $-1\leq A< B\leq 1$, hence we obtain the next result:

Corollary 3. Let $-1 \le A < B \le 1$ and $\mu \in C^*$. Let $f \in A(p)$ and suppose that

$$\frac{D_{p,l,\lambda}^m(f*g)(z)}{z^p} \neq 0, \ z \in U.$$

If

$$1 + \mu \left[\frac{z \left[D_{p,l,\lambda}^m(f * g)(z) \right]'}{D_{p,l,\lambda}^m(f * g)(z)} - p \right] \prec 1 + \frac{(A - B)z}{(1 + Az)(1 + Bz)}, \tag{3.11}$$

then

$$\left\lceil \frac{D^m_{p,l,\lambda}(f*g)(z)}{z^p} \right\rceil^{\mu} \prec \frac{1+Az}{1+Bz},$$

and $\frac{1+Az}{1+Bz}$ is the best dominant of (3.11).

Putting $\nu = 0$, $\eta = \lambda = p = 1$, m = l = 0, $\gamma = \frac{1}{ab}$ $(a, b \in \mathbb{C}^*)$, $\mu = a$, and $q(z) = (1-z)^{-2ab}$ in Theorem 2 and combining this together with Lemma 5 we obtain the result due to Obradović et al. [15, Theorem 1].

Putting $\nu=0,\ p=\eta=\lambda=\gamma=1,\ m=l=0,$ and $q(z)=(1+Bz)^{\frac{\mu(A-B)}{B}}$ $(-1\leq B< A\leq 1,\ B\neq 0)$ in Theorem 2, and using Lemma 5, we get the next corollary:

Corollary 4.Let $-1 \le B < A \le 1$, with $B \ne 0$, and suppose that $\left| \frac{\mu(A-B)}{B} - 1 \right| \le 1$ or $\left| \frac{\mu(A-B)}{B} + 1 \right| \le 1$. Let $f \in A_1$ such that $\frac{f(z)}{z} \ne 0$ for all $z \in U$, and let

 $\mu \in C^*$. If

$$1 + \mu \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \frac{1 + [B + \mu(A - B)] z}{1 + Bz}, \tag{3.12}$$

then

$$\left(\frac{f(z)}{z}\right)^{\mu} \prec \left(1+Bz\right)^{\frac{\mu(A-B)}{B}},$$

and $(1+Bz)^{\frac{\mu(A-B)}{B}}$ is the best dominant of (3.12).

Putting
$$\nu = 0$$
, $\eta = \lambda = p = 1$, $m = l = 0$, $\gamma = \frac{e^{i\zeta}}{ab\cos\zeta} \left(a, b \in \mathbb{C}^*; |\zeta| < \frac{\pi}{2}\right)$,

 $\mu=a$ and $q(z)=(1-z)^{-2ab\cos\zeta e^{-i\zeta}}$ in Theorem 2, we obtain the result due to Aouf et al. [3].

Theorem 3. Let q be univalent in U with q(0) = 1, let $\mu, \gamma \in C^*$, and let $\sigma, \Omega, \nu, \eta \in C$ with $\nu + \eta \neq 0$. Let $f \in A(p)$ and suppose that f and q satisfy the next two conditions:

$$\frac{\nu D_{p,l,\lambda}^{m+1}(f*g)(z) + \eta D_{p,l,\lambda}^{m}(f*g)(z)}{(\nu+\eta)z^{p}} \neq 0, \ z \in U, \tag{3.13}$$

and

$$\operatorname{Re}\left(1 + \frac{zq''(z)}{q'(z)}\right) > \max\left\{0; -\operatorname{Re}\frac{\sigma}{\gamma}\right\}, \ z \in U.$$
 (3.14)

If

$$\psi(z) \equiv \left\lceil \frac{\nu D_{p,l,\lambda}^{m+1}(f*g)(z) + \eta D_{p,l,\lambda}^{m}(f*g)(z)}{(\nu+\eta)z^p} \right\rceil^{\mu}.$$

$$\left[\sigma + \gamma \mu \left(\frac{\nu z \left[D_{p,l,\lambda}^{m+1}(f * g)(z)\right]' + \eta z \left[D_{p,l,\lambda}^{m}(f * g)(z)\right]'}{\nu D_{p,l,\lambda}^{m+1}(f * g)(z) + \eta D_{p,l,\lambda}^{m}(f * g)(z)} - p\right)\right] + \Omega \qquad (3.15)$$

and

$$\psi(z) \prec \sigma q(z) + \gamma z q'(z) + \Omega,$$
 (3.16)

then

$$\left[\frac{\nu D_{p,l,\lambda}^{m+1}(f*g)(z) + \eta D_{p,l,\lambda}^{m}(f*g)(z)}{(\nu+\eta)z^p}\right]^{\mu} \prec q(z),$$

and q is the best dominant of (3.16).

Proof. Let

$$G(z) = \left[\frac{\nu D_{p,l,\lambda}^{m+1}(f * g)(z) + \eta D_{p,l,\lambda}^{m}(f * g)(z)}{(\nu + \eta)z^{p}} \right]^{\mu}$$
(3.17)

Then G(z) is analytic in U, differentiating (3.17) logarithmically with respect to z, we have

$$\frac{zG'(z)}{G(z)} = \mu \left\{ \frac{\nu z \left[D_{p,l,\lambda}^{m+1}(f * g)(z) \right]' + \eta z \left[D_{p,l,\lambda}^{m}(f * g)(z) \right]'}{\nu D_{p,l,\lambda}^{m+1}(f * g)(z) + \eta D_{p,l,\lambda}^{m}(f * g)(z)} - p \right\},\,$$

hence

$$zG'(z) = \mu G(z) \left\{ \frac{\nu z \left[D_{p,l,\lambda}^{m+1}(f * g)(z) \right]' + \eta z \left[D_{p,l,\lambda}^{m}(f * g)(z) \right]'}{\nu D_{p,l,\lambda}^{m+1}(f * g)(z) + \eta D_{p,l,\lambda}^{m}(f * g)(z)} - p \right\}.$$

Now, let

$$\theta(w) = \sigma w + \Omega, \quad \varphi(w) = \gamma, \ w \in \mathbb{C},$$
$$Q(z) = zq'(z)\varphi(q(z)) = \gamma zq'(z) \ (z \in U)$$

and

$$h(z) = \theta(q(z)) + Q(z) = \sigma q(z) + \gamma z q'(z) + \Omega \ (z \in U).$$

Using (3.14), we see that Q is starlike in U and

$$\operatorname{Re}\frac{zh'(z)}{Q(z)} = \operatorname{Re}\left\{\frac{\sigma}{\gamma} + 1 + \frac{zq''(z)}{q'(z)}\right\} > 0,$$

hence, by applying Lemma 1, the proof of Theorem 3 is completed.

Taking $q(z) = \frac{1+Az}{1+Bz}(-1 \le B < A \le 1)$, in Theorem 3 and according to (3.5), the condition (3.14) reduces to

$$\max\left\{0; -\operatorname{Re}\frac{\sigma}{\gamma}\right\} \le \frac{1 - |B|}{1 + |B|}.$$

Hence, for the special case $\nu = \gamma = 1$, $\eta = 0$, we obtain the following result: Corollary 5. Let $-1 \le B < A \le 1$ and let $\sigma \in C$ with

$$\max\{0; -\operatorname{Re}\sigma\} \le \frac{1-|B|}{1+|B|}.$$

Let $f,g \in A(p)$ and suppose that $\frac{D_{p,l,\lambda}^{m+1}(f*g)(z)}{z^p} \neq 0$, $z \in U$, and let $\mu \in C^*$. If

$$\left[\frac{D_{p,l,\lambda}^{m+1}(f*g)(z)}{z^p}\right]^{\mu} \left[\sigma\zeta + \mu \left(\frac{z\left[D_{p,l,\lambda}^m(f*g)(z)\right]'}{D_{p,l,\lambda}^m(f*g)(z)} - p\right)\right] + \Omega$$

$$\prec \sigma \frac{1+Az}{1+Bz} + \Omega + z \frac{(A-B)}{(1+Bz)^2},$$
(3.18)

then

$$\left\lceil \frac{D^{m+1}_{p,l,\lambda}(f*g)(z)}{z^p} \right\rceil^{\mu} \prec \frac{1+Az}{1+Bz},$$

and $\frac{1+Az}{1+Bz}$ is the best dominant of (3.18).

Taking $\eta = \gamma = \lambda = p = 1$, $\nu = m = l = 0$, $g(z) = z(1-z)^{-1}$ and $q(z) = \frac{1+z}{1-z}$ in Theorem 3, we obtain the next corollary:

Corollary 6. Let $f \in A_1$ such that $\frac{f(z)}{z} \neq 0$ for all $z \in U$, and let $\mu \in C^*$. If

$$\left[\frac{f(z)}{z}\right]^{\mu} \left[\sigma + \mu \left(\frac{zf'(z)}{f(z)} - 1\right)\right] + \Omega \prec \sigma \frac{1+z}{1-z} + \Omega + \frac{2z}{(1-z)^2},\tag{3.19}$$

then

$$\left[\frac{f(z)}{z}\right]^{\mu} \prec \frac{1+z}{1-z},$$

and $\frac{1+z}{1-z}$ is the best dominant of (3.19).

4. Superordination and sandwich results

Theorem 4. Let q be convex in U with q(0) = 1 and $\delta \in C^*$ with $\frac{\lambda}{p(p+l)} \operatorname{Re}\{\delta\} > 0$. Let $f, g \in A(p)$ and suppose that $\frac{D^m_{p,l,\lambda}(f*g)(z)}{z^p} \in H[q(0),1] \cap \mathcal{Q}$. If the function

$$\frac{\delta}{p} \left(\frac{D_{p,l,\lambda}^{m+1}(f * g)(z)}{z^p} \right) + \frac{p - \delta}{p} \left(\frac{D_{p,l,\lambda}^{m}(f * g)(z)}{z^p} \right)$$

is univalent in the unit disc U, and

$$q(z) + \frac{\delta \lambda z q'(z)}{p(p+l)} \prec \frac{\delta}{p} \left(\frac{D_{p,l,\lambda}^{m+1}(f * g)(z)}{z^p} \right) + \frac{p-\delta}{p} \left(\frac{D_{p,l,\lambda}^{m}(f * g)(z)}{z^p} \right), \tag{4.1}$$

then

$$q(z) \prec \frac{D_{p,l,\lambda}^m(f*g)(z)}{z^p}$$

and q is the best subordinant of (4.1).

Proof. Let K(z) be given by (3.3), then, from the assumption of the theorem it is analytic in U. Differentiating K(z) logarithmically with respect to z, and using (1.5), we have

$$K(z) + \frac{\delta \lambda z K'(z)}{p(p+l)} = \frac{\delta}{p} \frac{D_{p,l,\lambda}^{m+1}(f*g)(z)}{z^p} + \frac{p-\delta}{p} \frac{D_{p,l,\lambda}^{m}(f*g)(z)}{z^p}.$$

Using Lemma 4, the proof of Theorem 4 is completed.

Taking $q(z) = \frac{1+Az}{1+Bz}$ in Theorem 4, where $-1 \le B < A \le 1$, we obtain the next corollary:

Corollary 7. Let q be convex in U with q(0) = 1, let $\delta \in C^*$ and with $\frac{\lambda}{p(p+l)} \operatorname{Re}\{\delta\} > 0$. Let $f, g \in A(p)$ suppose that $\frac{D^m_{p,l,\lambda}(f*g)(z)}{z^p} \in H[q(0),1] \cap \mathcal{Q}$. If the function

$$\frac{\delta}{p} \left(\frac{D_{p,l,\lambda}^{m+1}(f * g)(z)}{z^p} \right) + \frac{p - \delta}{p} \left(\frac{D_{p,l,\lambda}^{m}(f * g)(z)}{z^p} \right)$$

is univalent in U, and

$$\frac{1+Az}{1+Bz} + \frac{\delta\lambda(A-B)z}{p(p+l)(1+Bz)^2} \prec \frac{\delta}{p} \left(\frac{D_{p,l,\lambda}^{m+1}(f*g)(z)}{z^p}\right) + \frac{p-\delta}{p} \left(\frac{D_{p,l,\lambda}^{m}(f*g)(z)}{z^p}\right), \tag{4.2}$$

then

$$\frac{1+Az}{1+Bz} \prec \frac{D_{p,l,\lambda}^m(f*g)(z)}{z^p},$$

and $\frac{1+Az}{1+Bz}$ is the best subordinant of (4.2).

Using the same tequique of the proof of Theorem 3, and applying Lemma 3, we obtain the following result.

Theorem 5. Let q be convex in U with q(0) = 1, let $\mu, \gamma \in C^*$, and let $\sigma, \Omega, \nu, \eta \in C$ with $\nu + \eta \neq 0$ and $\operatorname{Re} \frac{\sigma}{\gamma} > 0$. Let $f, g \in A(p)$ and suppose that f satisfies the next conditions:

$$\frac{\nu D_{p,l,\lambda}^{m+1}(f*g)(z) + \eta D_{p,l,\lambda}^{m}(f*g)(z)}{(\nu+\eta)z^{p}} \neq 0, \ z \in \mathbf{U},$$

and

$$\left\lceil \frac{\nu D^{m+1}_{p,l,\lambda}(f*g)(z) + \eta D^m_{p,l,\lambda}(f*g)(z)}{(\nu+\eta)z^p} \right\rceil^{\mu} \in H[q(0),1] \cap \mathcal{Q}.$$

If the function ψ given by (3.15) is univalent in U, and

$$\sigma q(z) + \gamma z q'(z) + \Omega \prec \psi(z),$$
 (4.3)

then

$$q(z) \prec \left\lceil \frac{\nu D_{p,l,\lambda}^{m+1}(f*g)(z) + \eta D_{p,l,\lambda}^{m}(f*g)(z)}{(\nu+\eta)z^p} \right\rceil^{\mu},$$

and q is the best subordinant of (4.3).

Combining Theorem 1 with Theorem 4 and Theorem 3 with Theorem 5, we obtain respectively the following $sandwich\ results$:

Theorem 6. Let q_1 and q_2 be two convex functions in U with $q_1(0) = q_2(0) = 1$, let $\delta \in C^*$ with $\frac{\lambda}{p(p+l)} \operatorname{Re}\{\delta\} > 0$. Let $f, g \in A(p)$ and suppose that $\frac{D^m_{p,l,\lambda}(f * g)(z)}{z^p} \in H[q(0), 1] \cap Q$. If the function

$$\frac{\delta}{p} \left(\frac{D_{p,l,\lambda}^{m+1}(f * g)(z)}{z^p} \right) + \frac{p - \delta}{p} \left(\frac{D_{p,l,\lambda}^{m}(f * g)(z)}{z^p} \right)$$

is univalent in the unit disc U, and

$$q_{1}(z) + \frac{\delta \lambda z q_{1}'(z)}{p(p+l)} \prec \frac{\delta}{p} \frac{D_{p,l,\lambda}^{m+1}(f * g)(z)}{z^{p}} + \frac{p-\delta}{p} \frac{D_{p,l,\lambda}^{m}(f * g)(z)}{z^{p}}$$

$$\prec q_{2}(z) + \frac{\delta \lambda z q_{1}'(z)}{p(p+l)},$$
(4.4)

then

$$q_1(z) \prec \frac{D_{p,l,\lambda}^m(f*g)(z)}{z^p} \prec q_2(z),$$

and q_1 and q_2 are, respectively, the best subordinant and the best dominant of (4.4). **Theorem 7.** Let q_1 and q_2 be two convex functions in U with $q_1(0) = q_2(0) = 1$, let $\mu, \gamma \in C^*$, and let $\sigma, \Omega, \nu, \eta \in C$ with $\nu + \eta \neq 0$ and $\operatorname{Re} \frac{\sigma}{\gamma} > 0$. Let $f, g \in A(p)$ and suppose that f satisfies the next conditions:

$$\frac{\nu D_{p,l,\lambda}^{m+1}(f*g)(z) + \eta D_{p,l,\lambda}^{m}(f*g)(z)}{(\nu+\eta)z^{p}} \neq 0, \ z \in \mathbf{U},$$

and

$$\left\lceil \frac{\nu D^{m+1}_{p,l,\lambda}(f*g)(z) + \eta D^m_{p,l,\lambda}(f*g)(z)}{(\nu+\eta)z^p} \right\rceil^{\mu} \in H[q(0),1] \cap \mathcal{Q}.$$

If the function ψ given by (3.15) is univalent in U, and

$$\sigma q_1(z) + \gamma z q_1'(z) + \Omega \prec \psi(z) \prec \sigma q_2(z) + \gamma z q_2'(z) + \Omega, \tag{4.5}$$

then

$$q_1(z) \prec \left\lceil \frac{\nu D_{p,l,\lambda}^{m+1}(f*g)(z) + \eta D_{p,l,\lambda}^m(f*g)(z)}{(\nu+\eta)z^p} \right\rceil^{\mu} \prec q_2(z),$$

and q_1 and q_2 are, respectively, the best subordinant and the best dominant of (4.5). **Remark.** (i) Taking $b_k = 1$ or $g(z) = z^p(1-z)^{-1}$ in the above results, we obtain

results corresponding to the operator $I_p^m(\lambda, l)$; $(ii) \text{ Taking } b_k = \frac{(\alpha_1)_{k-p}...(\alpha_q)_{k-p}}{(\beta_1)_{k-p}...(\beta_s)_{k-p}(1)_{k-p}}, \text{ in the above results, we obtain the results obtained by El-Ashwah and Aouf [10];}$ $(iii) \text{ Taking } m = 0 \text{ and } b_k = \frac{\Gamma(p+\alpha+\beta)\Gamma(k+\beta)}{\Gamma(p+\beta)\Gamma(k+\alpha+\beta)}, \text{ in the above results,}$

we obtain the results obtained by Aouf and Bulboaca [4]

References

- [1] R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15 (2004), no. 1, 87-94.
- [2] F. M. AL-Oboudi, On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.
- [3] M. K. Aouf, F. M. Al.-Oboudi and M. M. Haidan, On some results for λ -spirallike and λ -Robertson functions of complex order, Publ. Institute Math. Belgrade, 77(91)(2005), 93–98.
- [4] M. K. Aouf and T. Bulboaca, Subordination and superordination properties of multivalent functions defined by certain operator, J. Franklin. Instit., 347 (2010), 641-653.
- [5] M. K. Aouf and A. O. Mostafa, On a subclass of n-p-valent prestarlike functions, Comput. Math. Appl., 55 (2008), no.4, 851-861.
- [6] T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math. 35 (2002), no. 2, 287-292.
- [7] T. Bulboaca, A class of superordination-preserving integral operators, Indag. Math. (N. S.). 13 (2002), no. 3, 301-311.

- [8] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
- [9] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in: Proc. Book of the International Symposium on Geometric Function Theory and Applications, Istanbul, Turkey, August 2007, pp. 241 250.
- [10] R. M. El-Ashwah and M. K. Aouf, Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comput Modelling, 51 (2010) 349-360.
- [11] M. Kamali and H. Orhan, On a subclass of certain starlike functions with negative coefficients, Bull. Korean Math. Soc., 41 (2004), no. 1, 53-71.
- [12] J.-L. Liu and S. Owa, Properties of certain integral operators, Internat. J. Math. Math. Sci., 3(2004), no.1, 69-75.
- [13] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- [14] S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Variables, 48 (2003), no. 10, 815-826.
- [15] M. Obradović, M. K. Aouf and S. Owa, On some results for starlike functions of complex order, Publ. Inst. Math. Belgrade, 46(60)(1989), 79–85.
- [16] W. C. Royster, On the univalence of a certain integral, Michigan Math. J., 12(1965), 385–387.
- [17] C. Selvaraj and K. R. Karthikeyan, Differential subordination and super-ordination for certain subclasses of analytic functions, Far East J. Math. Sci., 29 (2008), no.2, 419-430.
- [18] T. N. Shanmugam, S. Sivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, Internat. J. Math. Math. Sci., Vol. 2006, Article ID 29684, 1–13.
- [19] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, J. Austr.Math. Anal. Appl., 3 (1) (2006), Art. 8, 1-11.
- [20] T. N. Shanmugan, C. Ramachandran, M. Darus and S. Sivasubbramanian, Differential sandwich theorems for some subclasses of analytic functions involving a linear operator, Acta Math. Univ. Comenianae, 74(2007), no.2, 287–294.
- [21] H. M. Srivastava and A. Y. Lashin, Some applications of the Briot-Bouquet differential subordination, J. Ineq. Pure Appl. Math., 6(2005), no.2, Art. 41, 1–7.

A. O. Mostafa

Department of Mathematics, Faculty of Science

Mansoura University, Mansoura 35516, Egypt.

email: adelaeg254@yahoo.com