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A CLASS OF SECOND DERIVATIVE MULTISTEP METHODS FOR
STIFF SYSTEMS
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Abstract. In this paper we present details of a new class of implicit formu-
las of linear multistep methods to integrate ordinary differential equations (ODE)
numerically. The formulas require the knowledge of functions not only at the past
and present step-points, but also at the one future point. In order to obtain higher
order A-stable, multistep methods, we have used second derivative of the solutions,
additional stages and one future point, which give a class of efficient linear multistep
methods. This approach allows us to develop L-stable schemes of order up to 8 and
L(α)-stable schemes of order up to 12. The stability analysis is discussed and an
improvement is obtained in stability region. A good comparison between the results
of this class and the results due to others, demonstrate that this class is suitable for
stiff systems.
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1. Introduction

In recent years the problems of deriving more advanced and efficient methods for
stiff problems has received a great deal of attention, and as a result a wide variety
of approaches have been proposed. A potentially good numerical method for the
solution of stiff systems of ODEs must have good accuracy and some reasonably
wide region of absolute stability [2]. One of the first and most important stability
requirement, particulary for linear multistep method, is A-stability which was pro-
posed in [3]. However, the requirement of A-stability puts some limitations on the
choice of suitable linear multistep methods. Dahlquist proved that the order of an
A-stable linear multistep method ≤ 2 and that an A-stable multistep method must
be implicit. This pessimistic result has encouraged researchers to seek other classes
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of numerical methods for solving stiff equations.

The search for higher order A-stable multistep methods is carried out in the two
main directions:
• use higher derivatives of the solutions,
• throw in additional stages, off-step points, super-future points and like. This leads
into the large field general

linear methods[4].

One successful scheme in this direction was proposed by Enright[3] that used sec-
ond derivative of solution in his algorithm, Cash[1], Ismail[6], Hojjati[5] and Mehdizadeh[9]

introduced second derivative multistep methods that have good stability properties.
These methods are A-stable of high orders.

Here we construct a new class of A-stable methods for the numerical solution
of the stiff initial value problems. The algorithms which we shall derive will be
seen to require more work per step, but to have higher orders of accuracy and better
stability characteristics, than other second derivative multistep methods. This extra
stability is particularly important when integrating stiff systems of equations having
a jacobian with eigenvalues of large modulus lying close to the imaginary axis. In
the second section, second derivative multistep method (SDMM) is described . In
the third section, we introduce the details of our new method. Accuracy and the
stability behavior of our approach is analyzed in the forth section, and a comparison
is made with existing methods for A-stability orders. The numerical solutions and
a comparison have been shown with some methods for results in the final section.

2.Second derivative multistep methods (SDMM)

Starting with the second page the header should contain the name of the author and
a short title of the paper

Let us consider the stiff initial value problem

y′(x) = f(x, y(x)), y(x0) = y0,

on the finite interval I = [x0, xN ] where y : I → Rm and f : I × Rm → Rm is
continuous and differentiable.

A SDMM can be written in the form:

k∑
j=0

αjyn+j = h
k∑
j=0

βjfn+j + h2
k∑
j=0

γjgn+j , (1)

where αj , βj and γj are parameters to be determined and gn+j = f
(1)
n+j . If either βk

or γk is nonzero, the formula will be implicit.
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Taylor expansion shows that method (1) is of order p if and only if

k∑
j=0

αjj
q = q

k∑
j=0

βjj
q−1 + q(q + 1)

k∑
j=0

γjj
q−2, 0 ≤ p ≤ q,

Some known important SDMM schemes that will be used for comparison are as
follows:

• The Enright[3] k-step formulas of order k + 2 which takes the following form:

yn+1 − yn = h
k∑
j=0

βjfn+j−k+1 + h2γkgn+1.

• Second derivative extended backward differentiation formulas (E2BD), that
was introduced by Cash[1] with the following form:

class 1 :

Predictor: yn+k − yn+k−1 = h
∑k

j=0 βjfn+j + h2γkgn+k,

Corrector: yn+k − yn+k−1 = h
∑k+1

j=0 β̄jfn+j + h2(γ̄kgn+k + γ̄k+1gn+k+1),

class 2 :

Predictor: yn+k − yn+k−1 = h
∑k

j=0 βjfn+j + h2γkgn+k,

Corrector: yn+k − yn+k−1 = h
∑k+1

j=0 β̄jfn+j + h2γ̄kgn+k.

These are of order k + 2.

• Special class of SDMM, introduced by Ismail and Ibrahim [6] of the form:

k∑
j=0

αjyn+j = hβk(fn+k − β∗fn+k−1) + h2γk(gn+k − γ∗gn+k−1).

For β∗ = 0, γ∗ = 0 this is the same as the SDBDF [4] method.

173



M. Mehdizadeh Khalsaraei , N. Nasehi Oskuei, G. Hojjati - A class of second...

• Hojjati[5] introduced second derivative multistep method as follows:

Predictor:
∑k

j=0 αjyn+j+1 = hβkfn+k+1 + h2γkgn+k+1,

Corrector:
∑k

j=0 ᾱjyn+j = hβ̄kfn+k + h2(γ̄kgn+k − γ̄k+1gn+k+1).

This method is of order k + 2. The regions of A(α)-stability of above methods are
given in Table 3.

3.The new method

Let us consider the new SDMM of the form:

k∑
j=0

α̂jyn+j = h(β̂kfn+k + β̂k+1fn+k+1) + h2(γ̂kgn+k + γ̂k+1gn+k+1), (2)

where g(x, y) = y′′ = fx + fyf , α̂k = 1 and the other coefficients are chosen so that
(2) has order k + 3.

The coefficients of k-step methods of class (2) are given in table 1, for k =
1, 2, . . . , 6. It has used one super-future point technique and designed so that to
have good stability properties with high order of accuracy. Starting from given data
yn, yn+1, . . . , yn+k−1, a predictor is first used to predict yn+k+1, the derivative ap-
proximations y′n+k+1, y

′′
n+k+1 are then computed and finally yn+k is computed from

yn, yn+1, . . . , yn+k−1, y
′
n+k+1, y

′′
n+k+1. The way in which (2) is used in practice is by

carry out the following computations:

stage 1 : Compute ȳn+k as the solution of

k∑
j=0

αjyn+j = hβkfn+k + h2γkgn+k, (3)

where αk = 1 and the other coefficients are chosen so that (3) has order k + 1. The
coefficients of these methods are represented in table 2, for k = 1, 2, . . . , 6.

stage 2 : Compute ȳn+k+1 as the solution of

k∑
j=0

αjyn+j+1 = hβkfn+k+1 + h2γkgn+k+1. (4)
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stage 3 : Evaluate

ḡn+k+1 = g(xn+k+1, ȳn+k+1). (5)

stage 4 : Compute yn+k as the solution of

k∑
j=0

α̂jyn+j = h(β̂kfn+k + β̂k+1f̄n+k+1) + h2(γ̂kgn+k + γ̂k+1ḡn+k+1). (6)

Note that at each stages 1,2 and 4 a system of nonlinear equation must be solved
in order that the desired approximation can be computed. Usually, to solve these
nonlinear systems, a modified Newton method is used. Then a direct method is
used to solve any resulting system of linear equations. Hence, in each stage, it is
necessary to obtain the Jacobian matrix, the related LU factorization matrices and
a forward elimination and back substitution to solve a linear system. In order to
save computational effort, the approach described above can be modified such that
the Jacobian matrix to be the same in each of 3 steps. We observed that the solution
of system of ODEs (1) reduced to the solution of the following system of (generally)
nonlinear equations:

yn+k − hβkf(xn+k, yn+k)− h2γkg(xn+k, yn+k)− an+k = 0,

where an+k = −
∑k−1

j=0 ajyn+j . If we let

Xn+k = hβkf(xn+k, yn+k) + h2γkg(xn+k, yn+k) = yn+k − an+k,

then we have the following system of nonlinear equations to be solved:

F (Xn+k) = Xn+k − hβkf(xn+k, an+k +Xn+k)− h2γkg(xn+k, an+k +Xn+k) = 0.

After applying a modified Newton method, we have(
I − hβk ∂f∂y (xn+k, y

(m)
n+k)

)
∆y

(m)
n+k = hβkf(xn+k, y

(m)
n+k) + h2γkg(xn+k, y

(m)
n+k)−Xn+k,

X
(m+1)
n+k = ∆y

(m)
n+k +X

(m)
n+k.

(7)

In each step, we predict a value y
(0)
n+k using a suitable one-step method say, one of

the Runge-Kutta methods, and then using X
(0)
n+k = y

(0)
n+k − an+k, we predict X

(0)
n+k.

Hence, the first system of linear equations to be solved in the nth step is AX = b
where

A = F ′(X
(0)
n+k) = I − hβk

∂f

∂y
(xn+k, y

(0)
n+k)− h

2γkg(xn+k, y
(0)
n+k),
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b = −F (X
(0)
n+k) = hβkf(xn+k, y

(0)
n+k) + h2γkg(xn+k, y

(0)
n+k)−X

(0)
n+k.

In stages 1 and 2 the Jacobian matrix is I − hβk ∂f∂y − h
2γk

∂g
∂y and for step 4 the

Jacobian matrix is I − hβ̂k ∂f∂y − h
2γ̂k

∂g
∂y . By changing stage 4 to

Stage 4* :

yn+k − hβkfn+k − h2γkgn+k = −
∑k−1

j=0 α̂jyn+j + h(β̂k − βk)f̄n+k
+h(f̄n+k+1 + hγ̂k+1ḡn+k+1) + h2(γ̂k − γk)ḡn+k,

the Jacobian matrix in each of 3 steps 1,2 and 4* is the same as I−hβk ∂f∂y −h
2γk

∂g
∂y .

Therefore, when using an iteration to compute yn+k we use the same coefficient
matrix as was used with stage 1 and use the initial approximation ȳn+k to yn+k.
Practical experience has shown that this iteration scheme converges very fast. For-
tunately, this modification improves the computational efficiency of this approach.
Another important computational aspect which we consider is that variable stepsize.
This is the idea of estimating of the error in ȳn+k used by Cash[1]. It has used the
quantity

ηn+k = ‖yn+k − ȳn+k‖∞, (8)

as an estimate of the local truncation error in ȳn+k, and control the steplength of
integration on the basis of this estimate. If a local error tolerance, Tol, is imposed
at each step, the relationships between the new step h′ and the old step h are as
follows:

1) if ηn+k > tol, reject yn+k and set h′ = h/2;
2) if tol > ηn+k > tol/µ where µ = 2.5× 2k+1, accept yn+k and put h′ = h;
3) if ηn+k < µitol, i = 1, 2, 3, 4, accept yn+k. If h has not been changed for at

least k + 2 steps, set h′ = 2ih. Otherwise, keep h fixed.
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k 1 2 3 4 5 6

d 12 481 27703 3852793 123941911 7439022169

β̂k -6/d 178/d 16014/d 2506548/d 84099180/d 5119979220/d

β̂k+1 18/d 272/d 8586/d 771552/d 17616000/d 797544000/d
γ̂k -17/d -374/d -15462/d -1716408/d -46636200/d -2448145800/d
γ̂k+1 -7/d -92/d -2646/d -222048/d -4806000/d -208332000/d
α̂0 -1 31/d -325/d 13023/d -157036/d 4192900/d
α̂1 -512/d 3753/d -141616/d 1742625/d -48845544/d
α̂2 -31131/d 818856/d -9481000/d 271110375/d
α̂3 -4543056/d 36589000/d -983858000/d
α̂4 -152635500/d 2850301500/d
α̂5 -9531923400/d

Table 1: Coefficients in (2)

k 1 2 3 4 5 6

d 2 7 85 415 12019 13489
βk 1 6/d 66/d 300/d 8220/d 8820/d
γk -1/d -2/d -18/d -72/d -1800/d -1800/d
α0 -1 1/d -4/d 9/d -144/d 100/d
α1 -8/d 27/d -64/d 1125/d -864/d
α2 -108/d 216/d -4000/d 3375/d
α3 -576/d 9000/d -8000/d
α4 -18000/d 13500/d
α5 -21600/d

Table 2: Coefficients in (3)
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3.Accuracy and stability analysis

We now prove the following lemma regarding the order of accuracy of (2) used in
the way described by stages (1)-(4).

Lemma 1. Let
(i) formula (3) is of order k + 1,
(ii) formula (2) is of order k + 3,
(iii) the implicit algebra equations defining ȳn+k and ȳn+k+1 are solved using an

iteration scheme iterated to convergence,
then scheme (2) has order k + 2.

Proof: We prove this lemma on the assumption that yn+j is exact for 0 ≤ j ≤
k − 1, i.e., yn+j ≡ y(xn+j). Now ȳn+k satisfies the equation

yn+k − hβkfn+k − h2γkgn+k =
k−1∑
j=0

αjyn+j .

The analytic solution y(x) of the original differential equation satisfies

y(xn+k)− hβkf(xn+k, y(xn+k))− h2γk
df

dx
(xn+k, y(xn+k)) =

k−1∑
j=0

αjyn+j + Tn+k,

where Tn+k is the local truncation error associated with (3) at the point xn+k.
Setting εn+k ≡ y(xn+k)− yn+k and subtracting the above two relations, we have

εn+k − hβk
∂f

∂y
(xn+k, η1)εn+k − h2γk

d

dx

∂f

∂y
(xn+k, η2)εn+k = Tn+k,

where η1, η2 ∈ [y(xn+k), yn+k]. From this relation, it follows immediately that

εn+k =
[
I − hβk

(∂f
∂y

)
1
− h2γk

d

dx

(∂f
∂y

)
2

]−1
Tn+k,

where (∂f∂y )i, i = 1, 2, are Jacobian matrices evaluated at approximate points. Simi-
larly,

εn+k+1 =
[
I − hβk

(∂f
∂y

)
3
− h2γk d

dx

(∂f
∂y

)
4

]−1
×
{
− αk−1

[
I − hβk

(∂f
∂y

)
1
− h2γk d

dx

(∂f
∂y

)
2

]−1
Tn+k + Tn+k+1

}
.
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Thus, we see immediately that εn+k+1 = O(hk+2). Now the local truncation error
associated with (2) is∑k

j=0 α̂jy(xn+j)− h
(
β̂kf(xn+k, y(xn+k)) + β̂k+1f(xn+1, ȳn+k+1)

)
−h2

(
γ̂kg(xn+k, y(xn+k)) + γ̂k+1g(xn+k+1, ȳn+k+1)

)
=
∑k

j=0 α̂jy(xn+j)− h
(
β̂kf(xn+k, y(xn+k)) + β̂k+1f(xn+k+1, yn+k+1)

)
−h2

(
γ̂kg(xn+k, y(xn+k)) + γ̂k+1g(xn+k+1, yn+k+1)

)
+hβ̂k+1

(∂f
∂y

)
5
εn+k+1 + h2γ̂k+1

d
dx

(∂f
∂y

)
6
εn+k+1.

= Ĉk+4h
k+4yk+4(xn) + (1− αk−1)β̂k+1Ck+2h

k+3(∂f∂y
)
5
y(k+2)(xn) +O(hk+4),

where Ĉk+4 is the principal error constant associated with (2) and Ck+2 is the
principal error constant with (3). Values for the coefficients Ĉk+4, Ck+2 have been
given in Table 4. This completes the proof of the lemma. Lemma 1 shows the form
taken by the local truncation errors of formulas (2) and, in particular, shows that
they all have order k + 2.

The new algorithm given in section 3 displays good stability characteristics. If
we apply (3) and (6) to the test problem y′ = λy for which y′′ = λ2y, we get

k∑
j=0

cj(h̄)yn+j = 0, (9)

where
ck = 1− h̄β̂k − h̄2γ̂k,

cj = α̂j − h̄β̂k+1dj − h̄2γ̂k+1dj , j = 0, 1, . . . , k − 1,

d0 =
α0αk−1

A2 , dj =
αjαk−1

A2 − αj−1

A , j = 1, 2, . . . , k − 1,

and
h̄ = λh, A = 1− h̄βk − h̄2γk.

Therefore, the corresponding characteristic equation of kth order difference equa-
tion of the method is

π(ξ, h̄) =

k∑
j=0

cjξ
j = 0. (10)
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To see the zero-stability of this new method, one can easily show that by substi-
tuting h̄ = λh = 0 in (10) the resulting characteristic polynomial satisfies the root
condition and so the method is zero-stable [8].

To obtain the region of absolute stability we use the boundary locus method.
Thus, the stability regions given are not exact but are those which have been found
using a numerical search. By collecting coefficients of different powers of h̄ in (10),
we obtain

A6h̄
6 +A5h̄

5 +A4h̄
4 +A3h̄

3 +A2h̄
2 +A1h̄+A0 = 0, (11)

where A0, A1, . . . , A6 are functions of ξ. Inserting ξ = eiθ, (11) gives us six roots
h̄(θ), i = 1, 2, . . . , 6 which describe the stability domain. The corresponding (ap-
proximation) regions of A(α)-stability are given in Table 4.

Comparison of Tables 3 and 4 shows that regions of A(α)-stability for our new
method is larger than those of the other mentioned methods. Also the new formulas
of stepnumber k have higher order of accuracy and smaller error constants than
mentioned above second derivative formulas and they are A-stable of order 8. If
we consider values of k > 6 these formulas are highly A(α)-stable. However, when
solving stiff systems of equations, it may not be desirable to have too many different
order formulas, as quite often a change in order results in the coefficient matrix of
the modified Newton scheme having to be re-evaluated an LU-decomposed and this
is generally very expensive.

L-stability : From (8) we have

c0yn + c1yn+1 + · · ·+ ckyn+k = 0.

That is

yn+k = −ck−1
ck

yn+k−1 −
ck−2
ck

yn+k−2 − · · · −
c1
ck
yn+1 −

c0
ck
yn.

We observe that yn+k → 0 as h̄→∞ that means the method is L-stable or L(α)-
stable, according to whether the method is A-stable or A(α)-stable, respectively.
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Enright
method

E2BDF1 E2BDF2
Ismail
method

Hojjati
method

k p α(◦) p α(◦) p α(◦) p α(◦) p αmax(◦)

1 3 90 4 90 4 90 2 90 3 90
2 4 90 5 90 5 90 3 90 4 90
3 5 87.88 6 90 6 90 4 90 5 90
4 6 82.03 7 90 7 89 5 89.9 6 90
5 7 73.10 8 90 8 87 6 87.3 7 89.8
6 8 59.95 9 89 9 83 7 84.2 8 88.3

Table 3: The A(α)-stability of some mentioned methods

k p α(◦) Ck+2 Ĉk+4 k p α(◦) Ck+2 Ĉk+4

1 3 90 0.166 0.430E-02 7 9 89.79 0.337E-02 0.173E-03
2 4 90 0.476E-01 0.712E-02 8 10 88.33 0.249E-02 0.705E-04
3 5 90 0.211E-01 -0.651E-02 9 11 85.57 0.191E-02 0.466E-04
4 6 90 0.115E-01 0.238E-03 10 12 81.44 0.149E-02 0.249E-04
5 7 90 0.713E-02 0.402E-03 11 13 75.93 0.120E-02 0.201E-04
6 8 90 0.476E-02 0.208E-03 12 14 68.71 0.816E-03 0.142E-04

Table 4: The A(α)-stability of new method

3.Numerical Results

In this section we present some numerical results to compare the performance of
our new class of methods with that of other second derivative multistep methods.
What we shall be attempting to do, is to show the superior performance of new
method for a given fixed stepsize over some special methods for a small selection of
examples. We do not claim that our numerical results demonstrate the superiority
of our approach over any of the more second derivative approaches. However, we do
feel that our results indicate that a properly implemented version of our algorithm
should be useful for the numerical integration of stiff differential systems. We have
programmed these methods in MATLAB.
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Tol Fn evals. |Error in y1| |Error in y2| |Error in y3|

1E-03 86 0.436E-07 0.824E-07 0.298E-10

1E-04 102 0.637E-06 0.451E-06 0.232E-10

1E-05 160 0.293E-06 0.169E-06 0.301E-11

1E-06 224 0.524E-07 0.564E-07 0.342E-12

Table 5: Numerical results for Example.1

Example 1. The first test problem which we consider is

y′1 = −0.013y1 − 1000y1y3, y1(0) = 1,
y′2 = −2500y2y3, y2(0) = 1, 0 ≤ t ≤ 50,
y′3 = −0.013y1 − 1000y1y3 − 2500y2y3, y3(0) = 0,

which is chemistry problem. This problem was integrated using the 1-step new
SDMM scheme and the results obtained at the end point of the range of integration.
At each step a fixed error tolerance, Tol, was imposed and a maximum of 6 Newton
iterations was performed. If the relative accuracy of each iterate (in the sense of
relations (8)) was not less than Tol the Jacobian matrix was re-evaluated and if
convergence to the required degree of precision still did not occur within six iterations
the steplength was halved. An initial step h0 = 10−3 was used. In Table 5 we list
the results obtained for this integration. The true solution was obtained using an
explicit fourth order Runge-Kutta method with a very small value of h. Fn denotes
the number of times the right-hand side of (7). As you can see from Table 5, the
high orders of accuracy can be achieved by decreasing Tol.
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x The new Method

Error (y1) 3 2.478147E-11
Error (y2) 3 2.471093E-06

Error (y1) 5 3.450271E-14
Error (y2) 5 2.304573E-08

Error (y1) 10 -3.456372E-18
Error (y2) 10 -3.150734E-010

Table 6: The error results of Example 2

Example 2. Consider the non-linear system of differential equations:

y′1 = λy1 + y22, y1(0) = −1/(λ+ 2),

y′2 = −y2, y2(0) = 1,

where λ = 10000. The exact solution is:

y1(t) = −e−2x/(λ+ 2), y2(t) = e−x

and the results are tabulated in Table 6 for h = 0.0001 at different values of x. We
have obtained slightly better results than those of Ismail’s method[7].
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x yi The new method

y1 9.85172113863285E-1
0.4 y2 3.38639537890963E-5

y3 1.47940221854871E-2

y1 7.15827068718903E-1
40 y2 9.18553476456739E-6

y3 2.84163745746394E-1

y1 4.50518668477070E-1
400 y2 3.22290144170159E-6

y3 5.49478108624731E-1

Table 7: The results for Example 3

Example 3. Let us consider the following stiff problem

y′1 = −0.04y1 + 104y2y3,
y′2 = 0.04y1 − 104y2y3 − 3× 107y2

2,
y′3 = 3× 107y2

2,

with initial value y(0) = (1, 0, 0)T . This is a chemistry problem suggested by Robert-
son. The results of the numerical integration at x = 0.4, 40 and 400 are presented
in Table 7 solving with the method of order four and fixed stepsize h = 0.001.
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x yi Exact solution
Error
in new
method

Error in Is-
mail method

Error in
SDBDF

2.0 y1 -0.3616933169289E-5 0.52E-13 0.82E-10 0.31E-08
y2 0.9815029948230 0.19E-08 0.61E-05 0.18E-05
y3 01.018493388244 0.63E-08 0.57E-05 0.57E-05

Table 8: Numerical results for Example 4

Example 4. As our fourth numerical experiment, we consider the following stiff
problem arose from a chemistry problem

y′1 = −0.013y2 − 1000y1y2 − 2500y1y3,
y′2 = −0.013y2 − 1000y1y2,
y′3 = −2500y1y3,

with initial value y(0) = (0, 1, 1)T . We have solved this problem at x = 2.0 and
compared the results with those of Ismail’s method[6] and SDBDF[4]. A stepsize
h = 0.001 has been used here and the order of method is four. One can also use
the smaller stepsize to get significantly more accurate than this results. For the
numerical results, see Table 8.

Example 5. As our fifth example, consider the Van der Pol’s equation

y′1 = y2,
y′2 = µ2((1− y21)y2 − y1),

with initial value y(0) = (2, 0)T . In Table 9 we have shown the numerical results by
choosing µ = 500. It should also be noted that a stepsize h = 0.001 has been used
here and the order of method is five.
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x yi The new method

y1 -1.865095092034
1 y2 0.7524845332331

y1 1.8985234562376
5 y2 -0.7289532569825

y1 1.7865365203279
10 y2 -0.8156276589331

y1 1.5075643289233
20 y2 -1.1911230034538

Table 9: The results for Example 5

Example 6. Finally we present a numerical example which demonstrates the
superior stability properties of our formulas. We consider the following stiff ODEs

y′1 = −αy1 − βy2 + (α+ β − 1)e−x,
y′2 = βy1 − αy2 − (α− β − 1)e−x,

with initial value y(0) = (1, 1)T . In order to make this system homogeneous, we
introduce an additional variable y3 such that

y′3 = 1, y3(0) = 0.

The eigenvalues of the Jacobian associated with the resulting system are −α± iβ, 0
and the required solution is

y1(x) = y2(x) = e−x.

In Table 10 we give the results obtained for the integration of this problem for
the case α = 1, β = 30 with k = 5. The value of h chosen was 0.09, which is such
that the formula of E2BD-Class 2 reported by Cash[1] with k = 5 is unstable for this
problem. Also comparison with the formula of Class 1, the new formula gives more
accurate results for large t.
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x yi
Error in new
method

Error in E2BD1 Error in E2BD2

4.5 y1 0.3E-11 <0.1E-10 <0.1E-10
y2 0.3E-11 <0.1E-10 <0.1E-10

9 y1 0.3E-14 <0.1E-12 <0.1E-12
y2 0.3E-14 <0.1E-12 <0.1E-12

13.5 y1 0.7E-16 <0.1E-15 0.1E-11
y2 0.6E-16 <0.1E-15 0.1E-11

18 y1 0.1E-19 <0.1E-17 0.1E-11
y2 0.2E-19 <0.1E-17 0.1E-11

Table 10: Numerical results of Example 6, for the case α = 1, β = 30

4. Discussion

We have derived a class of methods that, as it has been shown in section 4,
has extensive region of stability and in particular is A-stable up to order 8. This
Property, let us to apply the new method for numerical solution of stiff systems of
ODEs with high accuracy. We do not claim that our numerical results demonstrate
the superiority of our approach over any of the more conventional approaches. How-
ever, we do feel that our results indicate that a properly implemented version of our
algorithm should be useful for the numerical integration of stiff differential systems.
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