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AN ITERATIVE METHOD FOR THE GENERALIZED
CENTRO-SYMMETRIC SOLUTION OF A LINEAR MATRIX
EQUATION AXB+CYD=F

YING-CHUN LI AND ZHI-HONG LIU

ABSTRACT. A matrix P € R™™"™ is said to be a symmetric orthogonal matrix
if P=PT = P~!. A matrix A € R"" is said to be generalized centro-symmetric
(generalized central anti-symmetric )with respect to P, if A = PAP(A = —PAP).
In this paper, an iterative method is constructed to solve the generalized centro-
symmetric solutions of a linear matrix equation AXB + CY D = E, with real pair
matrices X and Y. We show when the matrix equation is consistent over generalized
centro-symmetric pair matrices X and Y, for any initial pair matrices Xy and Yp,
the generalized centro-symmetric solution can be obtained within finite iterative
steps in the absence of roundoff errors, and the minimum norm of the generalized
centro-symmetric solutions can be obtained by choosing a special kind of initial pair
matrices. Furthermore, the optimal approximation pair solution X and Y to a given
matrices X and Y can be derived.

2000 Mathematics Subject Classification: 15A24, 15A57.
1. INTRODUCTION

Throughout the paper, the notations R™*"™, SOR™ ™ represent the set of all
n X n real and real symmetric orthogonal matrices, respectively. A ® B stands
for the Kronecker product of matrices A and B. AT, trace(A) and R(A) denote
the transpose, trace and column space of the matrix A respectively. Also vec(A)

represents the vector operator. i.e. vec(A) = (af,---,al)T € R™ for the matrix
A= (a1, ,an) € R™" a; € R™,i = 1,--- ,n. We define an inner product as

(A, B) = trace(BT A). Then the norm of a matrix A generated by this inner product
is the Frobenius norm and is denoted by ||A]|.

Definition 1.1. Let P be some real symmetric orthogonal n X n matriz, i.e.
P =Pl =Pl If A= PAP, then A is called a generalized centro-symmetric
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matriz with respect to P. CSRE™ denotes the set of order n generalized centro-
symmetric matrices with respect to P € SOR™ ",

The following two problems are considered in this paper.

Problem 1. Given matrices A € RP*" B € R", C € RP*™ D € R™*4, and
E € RP*, find a pair matrices X € CSRE™ andY € CSRE™™, such that

AXB+CYD=E. (1)

Problem II. When Problem I is consistent, let Sg denote the set of solutions
of Problem I

Se={(X,Y) e CSRY" x CSRp"™ : AXB+CYD = E}.

For given pair matrices X € R and Y € R™™ find the generalized centro-
symmetric pair matrices Xe Sg and Y € Sg such that

HX—YII—I—HY—?H:(XT{};H (IX =X+ Y - Y|} (2)

Matrix equation is one of the topics of very active research in computational
mathematics, and has been widely applied in various areas. Many results have been
obtained about equation (1).For example, Chu [1] gave the consistency conditions
and the minmum norm solution by making use of the generalized singular value
decomposition(GSVD). Huang and Zeng [2] and Ozgiiler [3], respectively, gave the
solvability conditions over a simple Artinian ring and principal ideal domain by
using the generalized inverse. Shim and Chen [4],Xu, Wei and Zheng [5] presented
the least square solution with the minimun norm by using the canonical correlation
decomposition(CCD) and GSVD. Yuan,Liao and Lei [6] obtain a unique least squares
symmetric the Kronecker product of matrices. Peng and Peng [7] solve the solution
of equation (1) by using iterative method Sheng and Chen [8] obtained the symmetric
and skew symmetric of equation (1) by using iterative method. In this paper, we will
use iterative method to solve the generalized centro-symmetric solutions of equation
(1).

This paper is organized as follows: In Section 2, we introduce an iterative algo-
rithm for solving Problem I. Then we prove several properties of Algorithm I. Also,
when the linear matrix equation (1) is consistent, we show for any initial generalized
centro-symmetric matrix pair Xg and Yy, a generalized centro-symmetric solution
can be obtained within finite iteration steps, and also show that if the initial matrix
is chosen as Xo = ATHBT + PATHBTP and Yy = CTHDT + PCTHDT P, where
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H is arbitrary, then the generalized centro-symmetric X* and Y* obtained by the
iterative method is the minimum norm solution. The optimal approximation gener-
alized centro-symmetric solution to given generalized centro-symmetric matrix pair
X and Y in the solution set of the linear matrix equation (1) is obtained in Section
3.

2. THE ITERATIVE ALGORITHM FOR SOLVING PROBLEM I

In this section, we will construct an iterative method to solve Problem I. Then, some
basic properties of the introduced iterative method are described. Finally, we show
that it is convergent.

Algorithm 1.
Step 1. Input matrices A, B,C, D, E and Xo € CSRY", Yy € CSRp™™.
Step 2.

RO = E—AX()B—CYE)D;
Py = ATRyBT;

ps Py + PP()P
0 92 )

Qo = CTRyD;

0 — Qo + PQoP
0 ) )
k= 0.

Step 3. If Ry = 0, then stop; else, k =k + 1.
Step 4. Calculate

| Ry—1]1
X = Xp1+ 15
1P 2+ llQg >

Ri_1|)?
Y = Y1+ | R 5 Q1

155117 + 1Q7 4 |
Ry = E— AXyB - CY:.D
[

= Rp1—
151112 + 1@k 112

(AP 1B+ CQj_1D);
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P, = ATR,BT;
Qr = CTRyD”;
P+ PPP  tr(PPi_y) +tr(QrQi_y)

P = Py
: 2 1P 2 +lQs 02
Q- Qi+ PQyP  tr(BPy) + tr(Qin*l)Qi N

2 1Py 1%+ 1195y 17 -

Step 5. Go to step 3.

Remark 2.1 Obviously, P;,Q; € CSR}*™ and X, € CSRY™".Y;, € CSRE™™
for k=0,1,---, from Algorithm I.

Lemma 2.218 Let A, B € R"™", then we have

(A,B) = (B, A) = (AT, BT) = (BT AT).

Lemma 2.3 Let P € SOR™™". je.P = PT =P~!, Ac R"""B ¢ CSRY",

then
A+ PAP

( 5 ,B) = (A, B).

Proof.
A+ PAP A- PAP

(4,B) = tr(B"A) = tr[B" (" + )]
BT(A+ PAP BT A BTpPAP
= tr[—( J; )]—i-tr( 5 ) —tr(—5—)
A+ PAP BTA PTBTpPT A
- (B () - ()
A+ PAP BT A BTA
= (D) — (D)
2 2 2
A+ PAP
- <#’B>‘

Lemma 2.4 Assume that the linear matriz equation (1) is consistent and (X*,Y™)

18 one of its solutions, then, for any initial generalized centro-symmetric matrix pair

(X0, Y0), the sequences {X;},{Yi}, {Ri},{ P} and {QF} generalized by Algorithm I
satisfy

<PiS7X* - Xz> + < f?Y* - E) = ”Rszv (Z =0,1,2,--- ) (3)
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Proof. We prove the conclusion by induction and notice that X™*, Xo, Y™, Y, are
all generalized centro-symmetric matrices. When ¢ = 0, we have

Qo + PQoP

<P57X*_X0>+<Q67Y*_}/E)> = 2

,X* —X0>+<
Py, X* — Xo) + (Qo, Y™ — Yp)

( Y* —-Yo)
(

= (ATRBT, X* — X¢) + (CTRy,DT, Y* — Yp)
(
(
(

= || Rol*.

Assume that (3) holds for ¢ = t(for t > 0), that is (P, X* — X;) + (Q;,Y" - Y;) =
| R¢||?, then for i =t + 1, we have

<Pts+17X* - Xt+1> -+ <Qf+1,Y* - Y;t+1>
_ <Pt+1 + PP P tr(Bea ) + tr(Qun QF)
2 P11 + [ QF I
Qi1+ PQua P tr(Pp1 PP) +tr(Qi10Q7) s e
- 2 Qtay _Y;f+1>
2 1P7]12 + 1@zl
P, PP, 1P P P
t+1 +2 t+1 ,X* _ Xt+1> + (Qt+1 +2 Qt+1 ,
tr(P,y 1 P?) +tr H
- P I 2 Q) e X Xy + (@Y~ Vi)

122117 + [1QF 1
tr( PP t H
= (Py1, X* = Xpp1) +(Qe11, Y — Vi) — (P - ZJF T(;Qt;ﬂ@t)
1P7* + Q7

(P ) + tr(Qua Q)

PEX* — X))

+

(PP, X" — Xip)

<Qf7 Y* — Y;f+1>

122112 + 1197112
= (A"R BT, X" — Xy1) + (CT Ry DT Y = Vi)
tr(Pe1PY) + tr(Qer1Q7) : [ R
- (P, X* — Xy — —— o Pf)
P12+ 11Q7 1% ! 1272+ Qs
_ tr(PH-lPts) + t?”(Qt+1Qf) <Qs v Y, — HRtH2 Qs>
122112 + Q7 12 " 1222 + Q711
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1r(PrsBE) 1 1 Qe Q) s o Xk
| Re|? ) (G (X" — X)) — (I pay
+ R S e e
tr(Po1P?) +t 5 2
T Y =0 = @ e o )
t t t t
tr(P1PP) + tr(Qi41Q7)
. 2 t+14¢ t+ t 2
_HRH-IH - HPtSH2+HQ?”2 HRtH
(P P) + t1(QunQ) IR
)+ i (G R 1ipe poy 4 (@2, @50
R AR A
— Rl

By the principle of induction, the conclusion (3) holds for all i = 0,1,2,--- .
Remark 2.5 From the formulae of P’ and @; i in Algorithm I and Lemma

7
2.4, we know that if the linear matrix equation (1) is consistent, then, R; = 0 if
and only if P, = 0 and @; = 0. This result implies that if there exists a positive
number k such that P = Qj = 0 but Ry # 0, then the linear matrix equation (1)
has no generalized centro-symmetric solution. Hence, the solvability of the linear
matrix equation (1) can be determined automatically by Algorithm I in the absence

of roundoff errors.

Lemma 2.6 Assume that the linear matriz equation (1) is consistent and the
sequences {R;}, {Pf} and {Q3}, where |R;||?> # 0(i = 0,1,2,--- ,k) generated by
Algorithm I. Then we have

<RZ7R]> :07 <Pz's7p;> +< vaj> :07 (7'7&.7727.7 :0717"' 7k) (4)

Proof. From Lemma 2.2 we know that (A, B) = (B, A) holds for all matrices A
and B in RP*?  we only prove that the conclusion holds for all 0 < i < j < k. Using
induction and two steps are required.

Step 1. Show that (R;, Riy1) = 0 and (P?, P/ ) + (QF, Q7 ;) = 0 for all i =
0,1,2,--- , k. To prove this conclusion, we also use induction.
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For ¢ = 0, we have

||]“?*0||2 s s
(Ro, R1) = (Ro,Ro— W(APOB +CQyD))
= Rol? — IOy ARB) + (R, 0Q3D)
125112 + 1Q¢ 12 ’ ’
S I L1 .17y A e )
155117 + Q51|
||R0”2 s s
= |Rol* - W(HPO 1>+ 1Q511%)
= 0.

and

P, + PP P B t?"(Plpg) + tT’(QlQ(S))
2 15112 + Q511
Ql + Ple B tT(P1P05) + tT(QlQS)
2 15517 + 1Q§112
P+ PP P PO P
e
_ tT’(PlPdg) + tr(Qng) Ps._ps s s
Rl vy o) T Qo)
= tr(PLFg) + tr(Q1Qq) — [tr(PLFy) + tr(Q1Q0)]
=0.

(Fg, Pr) +(Q6, Q1) = (K,

£

+ (Qo;

Qo)

Assume (4) holds for all ¢ < ¢(for0 < ¢t < k), then

IR s s
(R, Re1) = (Re, Ry — m(ﬂ’t B+ CQ;D))
— IR 2 HRtH2 ATR BT ps CTR DT s
- H t” HPSH2+HQSH2[< t ’ t>+< t 7Qt>]
t t
- B ip by o)
IR T R T i b
R B P PRP o Qut POP
- HRtH HPtSHQ_i_HQZgHQK 9 7Pt>+< 9 7Qt>]
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— ||RtH2 . ||Rt||2 <Pt + PPtP . tT(PtPts—l) + tT(Qth—l)Pts L Pts>
1P7]12 + [|Q7 17 2 1P 12+ Q5 1>
_ ”Rt”2 <Qt+PQtP _ tr(PtPtS—l) +tT(QtQ§—1)Qs Qs>
1P7]1% + 1QF 112 2 1P 2+ llQp_y 2 =
— IR 2 ||Rt||2 pPs. ps s s
_H tH HP8”2+”Q8”2[< to t>+<Qt7Qt>]
t t
= || Re)l? = (| Re|?
=0

and

s ps s s s Por+ PP P (P YY) 4 tr(Qu41Q7)
<Pt7 t+1>+<Qt7Qt+l> = <Pt> 9 - Pstg SN2 L
1P7]1% + Q7

Qe Quy1 + PQua P tr(Pa YY) + tr(Qi1QF)
b 2 1P7]12 + 11Q2 17
P, PP, 1P P P
— (P}, t+1 +2 i+1 )+ (Q5, Q41 +2 Q41 >
tT(Pt+1Pts) + tT’(Qt+1Q§)
- S s [<P87 PS> + <QS’ QS>]
| PE[12 + [|QF 12 bt bt
= tr(P1 P7) + tr(Qe1Qy) — [tr(Pea ) + tr(Qe+1Q7)]
=0.

)

Q7)

By the principle of induction, (R;, Ri11) = 0 and (P, P/ ;) + (QF, Q) = 0
hold for all 4 =0,1,--- , k.

Step 2. Assume that (R;, R;y;) = 0 and (P7, P7 ;) +(QF, Q7. ;) = 0 hold for all 0 <

i < kand 1 <1<k, show that (R;, Riy11) = 0 and (P7, P, ) +(QF,Q7,,,.,) =0.

[Rial?
(Riy Riy1+1) = (Ri, Riyy — (AP’ ,B+ CQ;. ;D))
v U IR P+ QP !
= (R;, R; | Risa R;, AP?,,B) + (R;, CP?,,D)]
— 79 Z+l> - ||P8+1H2 + HQ8+1H2[< Ty i+ + 79 i+l
i i
| Riqa]?
=- (P, Piyg) + (Qis Q7 4y)]
1P+ 1@y )2t e e
| R P+ PPP Qi+ PQ;P
= — , +(————, Q;
HPliZHQ + HQ15+[H2[< 9 z+l> < 9 Qz+l>]
IRl R+PRP_r(RPL) @@L e b
1P 117 + [1QF 117 2 1P 12+ llQsy 2
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| R; 4] <Qi + PQ;P  tr(PP ) +1tr(QiQ7 ) Q)
_ Q3
P s 2+ 1Q7 112 2 P2 112 + 11Q5_, 17 b

HRZHH
H +lH2 + HQz+1”2[< i z+l> (Q; z+z>]

=0

and

(P, Plgr) +(Q7F, Qi)
Piiiy1+ PPy P tr(Pi1 PPy ) + tr(Qii1 Q) s )
2 122112+ 11Q3, 112 L

s Qitir1 +PQiyi11 P tT(Pz+l+1P+z) +tr(Qit1+1Q5 )
e 2 B T oM
i+l i+l

Py + PPi+l+1P> Qe Qitiy1 + PQz+l+1P>
2 v 2

tr(Pi+l+1Pz+l) + tr(Qi+l+1Qf—|—l) [<Ps s > + < s s >]
- R 79 Wi+l

P2 N2+ 11Q3 |12
s Piii1+ PPy P s Qitit1 +PQipi1 P
7 2 > < 79 2 >

=

= (P}, Piyip1) +(Q7F, Qivig1)

= (P, ATRi1111B") +(Q},C" Riyy 11 DY)
=

_

= (P?,

7

e

AP B, Riai1) + (CQiD, Rijiia)

P2 + 119311
EE
IR+ Q2
EE

[(A(Xit1 — Xi) B, Riyi+1) + (C(Xiv1 — X4)D, Riyi11)]

[(Ri — Riy1, Riti41)]
=0.

From Step 1 and Step 2, the conclusion (4) holds by the principle of induction.

Remark 2.7 Lemma 2.6 implies that if the linear matrix equation (1) is con-
sistent, then, for any initial generalized centro-symmetric matrix pair Xg and Yy, a

solution can be obtained within at most pq iteration steps. Since the Ry, R1,- - -

orthogonal each other in the finite dimension matrix space RP*?, it is certain that

there exists a positive number k£ < pq such that Ry = 0.

Lemma 2.8 [9] Let the linear system Ax = b be consistent, if x* is a solution,

satisfied x* € R(A*) , then x* is the unique minimum normal solution of it.
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Lemma 2.9 In Algorithm I, if we choose the Xo = ATHBT + PATHBT P and

= CTHDT + PCTHDT P, where H is an arbitrary matriz in RP*9, then the
sequences of {Xk} and {Y)} generated by Algorithm I have the following properties
= ATH,BT + PATHIBTP and Y}, = ATH,.BT + pAT HT BT P, where Hy and

Hk 18 some matrix in RP*9,

Consider the following system of matrix equations

AXB+CYD=F
(5)

APXPB+CPYPD =FE

Obviously, the solvability of the above system of matrix equation is equivalent to
Problem I. The system of matrix equations (5) is equivalent to

(584 P80, ) ()= ().

Now suppose H € R™*"™ is obviously matrices, we have
ATHBT + PATHBTP ([ BQAT PBQPAT vec(H)
CTHDT + PCTHDTP ] — \ DQRCT PDPCT vec(H)

- < Bf;%iP D?;%gp )T ( Xﬁﬁggi )

R(( BT®A DTRC >T>

m

BTPRQ AP DT'PRCP
Obviously, if we consider
Xo=ATHBT + PATHB"P,Y, = cT"HD" + PCTHD™ P,
then all Yy, generated by Algorithm I satisfy
<V€C(Xk)>€R<< BT® A DTRC >T>
vec(Y%) BTPR AP DTPRCP
Hence by Lemma 2.8, if we take an initial matrices
Xo=ATHBT + PATHBYP,Yy = C'HDT + PCTHDTP,

then X* and Y* generated by Algorithm I are the least Frobenius norm general-
ized centro-symmetric solution. By using the above conclusions, we can prove the
following theorem.
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Theorem 2.10 Suppose that Problem I is consistent. If we take initial matrices
Xo=ATHB" + PATHB"P, Y, = cTHD" + PCTHD" P,

where H € R™"™ is arbitrary, or more especially Xo,Yp, then the solutions X* and
Y™ are the least Frobenius norm generalized centro-symmetric solution of Problem
I

3.THE SOLUTION OF PROBLEM II

We assume that X € R"*" and Y € R™*™ in Problem II, it is well known that a
generalized centro-symmetric matrix and a generalized central anti-symmetric are
orthogonal each other, for any X € CSRE™ and Y € CSRE™™, we have that

IX = X|? + Iy = Y?

X+ PXP X-PXP Y+PYP Y —-PYP

_ o 2 o 2

=X - (S S P Y - (e )
X + PXP X - PXP Y +PYP Y -PYP

= X = S | P Y - P

Denote X = @ and Y = @, when the linear matrix equation (1) is
consistent, the solution set Sg of the matrix equation (1) is no-empty, then

AXB+CYD=E & AX - X)B+C(Y -Y)D=E— AXB—CYD.

Let X = X — ?, Y=Y-Yand E=F— AXB — C’?D, then the matrix nearness
Problem II is the equivalent to find the minimum norm solution of the pair of matrix

equations B B B
AXB+CXD=EFE. (6)

By using Algorithm I, and let the initial matrix Xo=ATHBT + PATHBTP, Yo =
C’TH DT + PC’TH DTP where H is an arbitrary matrix in RP*9, more specially, let
Xo =0 and YO = (0, we can obtain the unique minimum norm solution X* and Y*
of linear matrix equation (6). Once the above matrix X* and Y* are obtained, the
unique generalized centro-symmetric solution pair of the matrix nearness Problem 11
can be obtained. In this case, X and Y can be expressed X=X"+X=X *—1—%

and Y = Y* + Y =Y* + @, respectively.
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