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FUNCTION
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Abstract. The Fox-Wright generalization of the classical hypergeometric func-
tion is used to introduce a new class of complex valued harmonic functions which
are orientation preserving and univalent in the open unit disc. Among the results
presented in this paper include the coefficient bounds, distortion inequality and cov-
ering property, extreme points and certain inclusion results for this generalized class
of functions.
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1. Introduction

A continuous function f = u + iv is a complex- valued harmonic function in
a complex domain G if both u and v are real and harmonic in G. In any simply-
connected domain D ⊂ G, we can write f = h + g, where h and g are analytic in
D. We call h the analytic part and g the co-analytic part of f. A necessary and
sufficient condition for f to be locally univalent and orientation preserving in D is
that |h′(z)| > |g′(z)| in D (see [2]).

We denote by H the family of functions

f = h+ g (1)

which are harmonic, univalent and orientation preserving in the open unit disc U =
{z : |z| < 1} so that f is normalized by f(0) = h(0) = fz(0) − 1 = 0. Thus, for
f = h + g ∈ H, the functions h and g analytic U can be expressed in the following
forms:

h(z) = z +
∞∑
m=2

amz
m, g(z) =

∞∑
m=1

bmz
m (0 ≤ b1 < 1),
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and f(z) is then given by

f(z) = z +
∞∑
m=2

amz
m +

∞∑
m=1

bmzm (|b1| < 1). (2)

It may be noted that the family H of orientation preserving, normalized harmonic
univalent functions reduces to the well known class S of normalized univalent func-
tions if the co-analytic part of f is identically zero, i.e. g ≡ 0.

Also, we denote by H the subfamily of H consisting of harmonic functions f =
h+ g of the form

f(z) = z −
∞∑
m=2

|am|zm +
∞∑
m=1

|bm|zm (|b1| < 1). (3)

The Hadamard product (or convolution) of two power series

φ(z) = z +
∞∑
m=2

λmz
m (4)

and

ϕ(z) = z +
∞∑
m=2

µmz
m (5)

is defined (as usual) by (φ ∗ ϕ)(z) = φ(z) ∗ ϕ(z) = z +
∞∑
m=2

λmµmz
m.

For positive real parameters α1, A1, . . . , αp, Ap and β1, B1, . . . , βq, Bq(p, q ∈ N0 =

N ∪ {0}) satisfying the condition that 1 +
q∑

m=1
Bm −

p∑
m=1

Am ≥ 0 (z ∈ U), the Fox-

Wright generalization

pΨq[(α1, A1), . . . , (αp, Ap); (β1, B1), . . . , (βq, Bq); z] =p Ψq[(αm, Am)1,p(βm, Bm)1,q; z]

of the hypergeometric function pFq(α1, . . . , αp;β1, . . . , βq; z) is defined by [12]; ( see
also [10].)

pΨq[(αm, Am)1,p(βm, Bm)1,q; z] =
∞∑
m=0

{
p∏

n=1

Γ(αn+mAn}{
q∏

n=1

Γ(βn+mBn}−1 z
m

m!
(z ∈ U).

If An = 1(n = 1, ..., p) and Bn = 1(n = 1, ..., q), then we have the following
obvious relationship:

ΘpΨq[(αn, 1)1,p(βn, 1)1,q; z] ≡ pFq(α1, . . . αp;β1, . . . , βq; z)

=
∞∑
m=0

(α1)m . . . (αp)m
(β1)m . . . (βq)m

zm

m!
(6)
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where pFq(α1, . . . αp;β1, . . . , βq; z) is the generalized hypergeometric function (see
for details [4]), (α)m = α(α+1) . . . (α+m− 1) is the familiar Pochhammer symbol,
and Θ is given by

Θ =

(
p∏

n=0

Γ(αn)

)−1( q∏
n=0

Γ(βn)

)
. (7)

By using the generalized hypergeometric function, Dziok and Srivastava [4] in-
troduced a linear operator which was subsequently extended by Dziok and Raina [3]
by using the Fox-Wright generalized hypergeometric function .

Let W [(αn, An)1,p; (βn, Bn)1,q] : S → S be a linear operator defined by

W [(αn, An)1,p; (βn, Bn)1,q]φ(z) := {Θz pΨq[(αn, An)1,p; (βn, Bn)1,q; z]} ∗ φ(z),

then on using (4) and (7), we get

W [(αn, An)1,p; (βn, Bn)1,q]φ(z) = z +
∞∑
m=2

Θσm(α1) λmzm, (8)

where Θ is defined by (7), and σm(α1) is given by

σm(α1) =
ΘΓ(α1 +A1(m− 1)) . . .Γ(αp +Ap(m− 1))

(m− 1)!Γ(β1 +B1(m− 1)) . . .Γ(βq +Bq(m− 1))
. (9)

For convenience sake, we adopt the contracted notation W p
q [α1] to represent the

following:

W p
q [α1]φ(z) = W [(α1, A1), . . . , (αl, Ap); (β1, B1), . . . , (βq, Bq)]φ(z), (10)

which we use in the sequel throughout. The linear operator W p
q [α1] contains the

Dziok-Srivastava operator (see [4]), and as its various special cases contain such linear
operators as the Hohlov operator, Carlson-Shaffer operator, Ruscheweyh derivative
operator, generalized Bernardi-Libera-Livingston operator and fractional derivative
operator. Details and references about these operators can be found in [3] and [4].

In view of the relationship (6) and the linear operator (8) for the harmonic
function f = h+ g given by (1), we define the operator

W p
q [α1]f(z) = W p

q [α1]h(z) +W p
q [α1]g(z), (11)

and introduce below a new subclass WH([α1], λ, γ) of H in terms of the operator
defined by (11) .
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Goodman [5] introduced two interesting subclasses of S. One of the subclasses
of S is the class UCV of uniformly convex functions and its analytic characterization
is defined as follows: A function φ ∈ UCV if and only if

Re
{

1 +
zφ′′(z)
zφ′(z)

}
≥ Re

{
ζφ′′(z)
zφ′(z)

}
, (z, ζ) ∈ U × U .

Upon choosing ζ = −eiψz, the above assertion becomes that φ ∈ UCV if and only
if Re

{
1 + (1 + eiψ) zφ

′′(z)
zφ′(z)

}
≥ 0, where ψ is real.

In order to consider extension of the class UCV to include the harmonic func-
tions, we introduce here a new subclass W p

qGH([α1], γ) of H consisting of harmonic
functions f ∈ H of the form (1) such that

Re

{
1 + (1 + eiψ)

z2(W p
q [α1]h(z))′′ + 2z(W p

q [α1]g(z))′ + z2(W p
q [α1]g(z))′′

z(W p
q [α1]h(z))′ − z(W p

q [α1]g(z))′

}
≥ γ,

(12)
where 0 ≤ γ < 1 (z ∈ U) and W p

q [α1]f(z) is defined by (11).
We also let WTH([α1], γ) = W p

qGH([α1], γ)
⋂
TH, where TH ([9]) is the class of

harmonic functions f such that

f(z) = z −
∞∑
m=2

|am|zm −
∞∑
m=1

|bm|zm, |b1| < 1. (13)

We deem it appropriate to mention here some of the useful subclasses which stem
from the class W p

qGH([α1], γ) defined above by (12). Indeed, for suitable choices of
p, q and other involved parameters, the family W p

qGH([α1], γ) from (12) reduces to
the classes which we illustrate below.
(i) If we put An = 1(n = 1, ..., p) and Bn = 1(n = 1, ..., q), then the family
W p
qGH([α1], γ) defined by (12) reduces to the class denoted by HGH([α1], γ) which

satisfies the inequality:

Re

{
1 + (1 + eiψ)

z2(Hp
q ([α1]h(z))′′ + 2z(Hp

q ([α1]g(z))′ + z2(Hp
q ([α1]g(z))′′

z(Hp
q ([α1]h(z))′ − z(Hp

q ([α1]g(z))′

}
≥ γ

where Hp
q ([α1]) is the Dziok - Srivastava operator [4].

(ii) Next, in view of the relationship W 2
1 ([a, 1; c]) = L(a, c)f(z), we obtain a class

LGH([α1], γ) satisfying the inequality:

Re

{
1 + (1 + eiψ)

z2(L(a, c)h(z))′′ + 2z(L(a, c)g(z))′ + z2(L(a, c)g(z))′′

z(L(a, c)h(z))′ − z(L(a, c)g(z))′

}
≥ γ,
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where L(a, c) is the Carlson - Shaffer operator [1].
(iii) Also, by noting the relationship W 2

1 ([λ+1, 1; 1]) = Dδf(z), we arrive at the
class RGH([α1], γ) which satisfies the inequality:

Re

{
1 + (1 + eiψ)

z2(Dδh(z))′′ + 2z(Dδg(z))′ + z2(Dδg(z))′′

z(Dδh(z))′ − z(Dδg(z))′

}
≥ γ,

where Dδf(z)(δ > −1) is the Ruscheweyh derivative operator [8] (also see [7]).
(iv) Lastly, in view of the relationship W 2

1 ([2, 1; 2 − µ]) = Ωµ
z f(z), we obtain

another class FGH([α1], γ) satisfying the condition that

Re

{
1 + (1 + eiψ)

z2(Ωµ
zh(z))′′ + 2z(Ωµ

z g(z))′ + z2(Ωµ
z g(z))′′

z(Ωµ
zh(z))′ − z(Ωµ

z g(z))′

}
≥ γ,

where Ωµ
z is the Srivastava-Owa fractional derivative operator [11] given by

Ωµ
z f(z) = Γ(2− µ)zµDµ

z f(z)(0 ≤ µ < 1).

Motivated by the earlier works of [6,7,9] on the subject of harmonic functions, we
in this paper obtain first a sufficient coefficient condition for function f given by (2)
to be in the class W p

qGH([α1], γ). It is then shown that this coefficient condition is
necessary also for functions belonging to the class WTH([α1], γ). Further, distortion
results and extreme points for functions in WTH([α1], γ) are also obtained.

2.The class W p
qGH([α1], γ).

We begin by stating and proving a sufficient coefficient condition for the function
of the form (2) to belong to the class W p

qGH([α1], γ). This result is contained in the
following.

Theorem 1. Let f = h+ g be given by (2). If

∞∑
m=1

m

(
2m− 1− γ

1− γ
|am|+

2m+ 1 + γ

1− γ
|bm|

)
σm(α1) ≤ 2, (14)

where 0 ≤ γ < 1, then f ∈W p
qGH([α1], γ).

Proof. We first show that if the inequality (14) holds for the coefficients of f =
h+g, then the required condition (12) is satisfied. Using (11) and (12), we can write

Re
{
z(W p

q [α1]h(z))′+(1+eiψ)z2(W p
q [α1]h(z))′′+(1+2eiψ)z(W p

q [α1]g(z))′+(1+eiψ)z2(W p
q [α1]g(z))′′

z(W p
q [α1]h(z))′−z(W p

q [α1]g(z))′

}

= Re
A(z)
B(z)
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where A(z) = z(W p
q [α1]h(z))′+(1+eiψ)z2(W p

q [α1]h(z))′′+(1+2eiψ)z(W p
q [α1]g(z))′+

(1 + eiψ)z2(W p
q [α1]g(z))′′ and B(z) = z(W p

q [α1]h(z))′ − z(W p
q [α1]g(z))′. In view of

the simple assertion that Re (w) ≥ γ if and only if |1 − γ + w| ≥ |1 + γ − w|, it is
sufficient to show that

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0. (15)

Substituting the above appropriate expressions for A(z) and B(z) in (15), we get

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

≥ (2− γ)|z| −
∞∑
m=2

m(2m− γ)σm(α1)|am| |z|m −
∞∑
m=1

m(2m+ γ)σm(α1)|bm| | |z|m

−γ|z| −
∞∑
m=2

m(2m− 2− γ)σm(α1)|am| |z|m

−
∞∑
m=1

m(2m+ 2 + γ)σm(α1)|bm| |z|m.

≥ 2(1− γ)|z|

{
1−

∞∑
m=2

m
2m− 1− γ

1− γ
σm(α1)|am| −

∞∑
m=1

m
2m+ 1 + γ

1− γ
σm(α1)|bm|

}
≥ 0

by virtue of the inequality (14). This implies that f ∈ GH([α1], γ).

The following result gives a necessary and sufficient condition for the function
given by (13) to belong to WTH([α1], γ).

Theorem 2. Let f = h + g be given by (13). Then f ∈ WTH([α1], γ) if and
only if

∞∑
m=1

m

{
2m− 1− γ

1− γ
|am|+

2m+ 1 + γ

1− γ
|bm|

}
σm(α1) ≤ 2, (16)

where 0 ≤ γ < 1.

Proof. SinceWTH([α1], γ) ⊂W p
qGH([α1], γ), we only need to prove the necessary

part of the theorem. Assume that f ∈WTH([α1], γ), then by virtue of (11) to (12),
we obtain

Re

{
(1− γ) + (1 + eiψ)

z2W p
q [α1]h(z))′′ + 2zW p

q [α1]g(z))′ + z2W p
q [α1]g(z))′′

zW p
q [α1]h(z))′ − zW p

q [α1]g(z))′

}
≥ 0.

The above inequality is equivalent to
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Re

 z−
( ∞∑
m=2

m[m(1+eiψ)−γ−eiψ ]σm(α1)|am|zm+
∞∑
m=1

m[m(1+eiψ)+γ+eiψ ]σm(α1)|bm|zm
)

z−
∞∑
m=2

σm(α1)|am|zm+
∞∑
m=2

σm(α1)|bm|zm



= Re


(1− γ)−

∞∑
m=2

m[m(1 + eiψ)− eiψ − γ]σm(α1)|am|zm−1

1−
∞∑
m=2

σm(α1)|am|zm−1 + z
z

∞∑
m=1

σm(α1)|bm|zm−1


− Re


z
z

∞∑
m=1

m[m(1 + eiψ) + eiψ + γ]σm(α1)|bm|zm−1

1−
∞∑
m=2

σm(α1)|am|zm−1 + z
z

∞∑
m=1

σm(α1)|bm|zm−1

 ≥ 0.

This condition must hold for all values of z such that |z| = r < 1. Upon noting
that Re(−eiψ) ≥ −|eiψ| = −1, the above inequality reduces to

(1− γ)−
[ ∞∑
m=2

m(2m− 1− γ)σm(α1)|am|rm−1 +
∞∑
m=1

m(2m+ 1 + γ)σm(α1)|bm|rm−1

]
1−

∞∑
m=2

σm(α1)|am|rm−1 +
∞∑
m=1

σm(α1)|bm|rm−1

≥ 0. (17)

If (16) does not hold, then the numerator in (17) is negative for r sufficiently close
to 1. Therefore, there exists a point z0 = r0 in (0,1) for which the quotient in
(17) is negative. This contradicts our assumption that f ∈ WTH([α1], γ). We thus
conclude that it is both necessary and sufficient that the coefficient bound inequality
(16) holds true when f ∈WTH([α1], γ). This completes the proof of Theorem 2.

3.Distortion and Extreme Points

In this section we obtain the distortion bounds for the functions f ∈WTH([α1], γ)
that lead to a covering result for the family WTH([α1], γ).
Theorem 3.If f ∈WTH([α1], γ) then

|f(z)| ≤ (1 + |b1|)r +
1

2σ2(α1)

(
1− γ

3− γ
− 3 + γ

3− γ
|b1|
)
r2

and

|f(z)| ≥ (1− |b1|)r −
1

2σ2(α1)

(
1− γ

3− γ
− 3 + γ

3− γ
|b1|
)
r2.
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Proof. We will only prove the right- hand inequality of the above theorem. The
arguments for the left- hand inequality are similar and so we omit it. Let f ∈
WTH([α1], γ) taking the absolute value of f, we obtain

|f(z)| ≤ (1 + |b1|)r +
∞∑
m=2

(|am|+ |bm|)rm

≤ (1 + b1)r + r2
∞∑
m=2

(|am|+ |bm|).

This implies that

|f(z)| ≤ (1 + |b1|)r

+
1

2σ2(α1)
1− γ

(3− γ)

( ∞∑
m=2

3− γ

1− γ
2σ2(α1)|am|+

3− γ

1− γ
2σ2(α1)|bm|

)
r2

≤ (1 + |b1|)r +
1

2σ2(α1)
1− γ

(3− γ)

[
1− 3 + γ

1− γ
|b1|
]
r2

≤ (1 + |b1|)r +
1

2σ2(α1)

(
1− γ

3− γ
− 3 + γ

3− γ
|b1|
)
r2,

which establishes the desired inequality.
As a consequence of the above theorem , we state the following covering lemma.

Corollary 1.Let f = h + g and of the form (2) be so that f ∈ WTH([α1], γ).
Then{
w : |w| < 6σ2(α1)− 1− [2σ2(α1)− 1]γ

2(3− γ)σ2(α1)
− 6σ2(α1)− 1− [2σ2(α1) + 1]γ

2(3− γ)σ2(α1)
b1

}
⊂ f(U).

Next we determine the extreme points of closed convex hulls of WTH([α1]γ)
denoted by clcoWTH([α1], γ).
Theorem 4. A function f(z) ∈WTH([α1], γ) if and only if

f(z) =
∞∑
m=1

(Xmhm(z) + Ymgm(z))
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where

h1(z) = z, hm(z) = z − 1− γ

m(2m− 1− γ)σm(α1)
zm; (m ≥ 2),

gm(z) = z − 1− γ

m(2m+ 1 + γ)σm(α1)
zm; (m ≥ 2),

∞∑
m=1

(Xm + Ym) = 1, Xm ≥ 0 and Ym ≥ 0.

In particular, the extreme points of WTH([α1], γ) are {hm} and {gm}.

Proof. First, we note that for f as in the theorem above, we may write

f(z) =
∞∑
m=1

(Xmhm(z) + Ymgm(z))

=
∞∑
m=1

(Xm + Ym)z −
∞∑
m=2

1− γ

m(2m− 1− γ)σm(α1)
Xmz

m

−
∞∑
m=1

1− γ

m(2m+ 1 + γ)σm(α1)
Ymz

m

= z −
∞∑
m=2

Amz
m −

∞∑
m=1

Bmz
m

where Am = 1−γ
m(2m−1−γ))σm(α1)Xm, and Bm = 1−γ

m(2m+1+γ)σm(α1)Ym.
Therefore

∞∑
m=2

m(2m− 1− γ)σm(α1)
1− γ

Am +
∞∑
m=1

m(2m+ 1 + γ)σm(α1)
1− γ

Bm

=
∞∑
m=2

Xm +
∞∑
m=1

Ym = 1−X1 ≤ 1,

and hence f(z) ∈ clcoWTH([α1], γ).
Conversely, suppose that f(z) ∈ clcoWTH([α1], γ). Setting

Xm =
m(2m− 1− γ)σm(α1)

1− γ
Am, (m ≥ 2)

and
Ym =

m(2m+ 1 + γ)σm(α1)
1− γ

Bm, (m ≥ 1)
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where
∞∑
m=1

(Xm + Ym) = 1. Then

f(z) = z −
∞∑
m=2

amz
m −

∞∑
m=1

bmz
n, (am, bm ≥ 0).

= z −
∞∑
m=2

1− γ

m(2m− 1− γ)σm(α1)
Xmz

m −
∞∑
m=1

1− γ

m(2m+ 1 + γ)σm(α1)
Ymz

m

= z −
∞∑
m=2

(hm(z)− z)Xm −
∞∑
m=1

(gm(z)− z)Ym

=
∞∑
m=1

(Xmhm(z) + Ymgm(z))

as required.

4.Inclusion Results

Now we show that WTH([α1], γ) is closed under the convex combination of its
members and is also closed under the convolution product.
Theorem 5. The family WTH([α1], γ) is closed under convex combinations.
Proof. For i = 1, 2, . . . , suppose that fi ∈WTH([α1], γ) where

fi(z) = z −
∞∑
m=2

ai,mz
m −

∞∑
m=1

bi,mz
m.

Then, by Theorem 2

∞∑
m=2

m(2m− 1− γ)σm(α1)
(1− γ)

ai,m +
∞∑
m=1

m(2m+ 1 + γ)σm(α1)
(1− γ)

bi,m ≤ 1. (18)

For
∞∑
i=1

ti, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑
i=1

tifi(z) = z −
∞∑
m=2

( ∞∑
i=1

tiai,m

)
zm −

∞∑
m=1

( ∞∑
i=1

tibi,m

)
zm.
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Using the inequality (16), we obtain

∞∑
m=2

m(2m− 1− γ)σm(α1)
(1− γ)

( ∞∑
i=1

tiai,m

)
+

∞∑
m=1

m(2m+ 1 + γ)σm(α1)
(1− γ)

( ∞∑
i=1

tibi,m

)

=
∞∑
i=1

ti

( ∞∑
m=2

m(2m− 1− γ)σm(α1)
(1− γ)

ai,m +
∞∑
m=1

m(2m+ 1 + γ)σm(α1)
(1− γ)

bi,m

)

≤
∞∑
i=1

ti = 1,

and therefore
∞∑
i=1

tifi ∈WTH([α1], γ).

Theorem 6. For 0 ≤ β ≤ γ < 1, let f(z) ∈WTH([α1], γ) and F (z) ∈WTH([α1], δ).
Then f(z) ∗ F (z) ∈WTH([α1], γ) ⊂WTH([α1], δ).

Proof. Let f(z) = z −
∞∑
m=2

amz
m −

∞∑
m=1

bmz
m ∈ WTH([α1], γ) and F (z) = z −

∞∑
m=2

Amz
m −

∞∑
m=1

Bmz
m ∈ WTH([α1], δ). Then f(z) ∗ F (z) is f(z) ∗ F (z) = z −

∞∑
m=2

amAmz
m −

∞∑
m=1

bmBmz
m.

For f(z) ∗ F (z) ∈ WTH([α1], δ) we note that |Am| ≤ 1 and |Bm| ≤ 1. Now by
Theorem 2, we have

∞∑
m=2

m(2m− 1− δ)σm(α1)
1− δ

|am| |Am|+
∞∑
m=1

m(2m+ 1 + δ)σm(α1)
1− δ

|bm| |Bm|

≤
∞∑
m=2

m(2m− 1− δ)σm(α1)
1− δ

|am|+
∞∑
m=1

m(2m+ 1 + δ))σm(α1)
1− δ

|bm|

and since 0 ≤ δ ≤ γ < 1

≤
∞∑
m=2

m(2m− 1− γ))σm(α1)
1− γ

|am|+
∞∑
m=1

m(2m+ 1 + γ))σm(α1)
1− γ

|bm| ≤ 1,

by Theorem 2 f(z) ∈ WTH([α1], γ). Therefore f(z) ∗ F (z) ∈ WTH([α1], γ) ⊂
WTH([α1], δ).

Lastly, we examine the closure properties of the class WTH([α1], γ) under the
generalized Bernardi-Libera -Livingston integral operatorLc(f) which is defined by

Lc(f) =
c+ 1
zc

z∫
0

tc−1f(t)dt (c > −1).
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Theorem 7. Let f(z) ∈WTH([α1], γ), then Lc(f(z)) ∈WTH([α1], γ)

Proof. From the representation of Lc(f(z)), it follows that

Lc(f) =
c+ 1
zc

z∫
0

tc−1
[
h(t) + g(t)

]
dt.

=
c+ 1
zc

 z∫
0

tc−1

(
t−

∞∑
m=2

amt
m

)
dt−

z∫
0

tc−1

( ∞∑
m=1

bmtm

)
dt


= z −

∞∑
m=2

Amz
m −

∞∑
n=1

Bmz
m

where Am = c+1
c+m am;Bm = c+1

c+m bm. Therefore,

∞∑
m=1

m

(
2m− 1− γ

1− γ
(
c+ 1
c+m

|am|) +
2m+ 1 + γ

1− γ
(
c+ 1
c+m

|bm|)
)
σm(α1)

≤
∞∑
m=1

m

(
2m− 1− γ

1− γ
|am|+

2m+ 1 + γ

1− γ
|bm|

)
σm(α1)

≤ 2(1− γ).

Since f(z) ∈WTH([α1], γ), therefore by Theorem 2, Lc(f(z)) ∈WTH([α1], γ).

Concluding Remarks. We observe that if we specialize the various parameters
of the class WTH([α1], γ) suitably, we would arrive at the analogous results for the
classes HGH([α1], γ), LGH([α1], γ) RGH([α1], γ) and FGH([α1], γ) (defined above in
Section 1). These obvious consequences of our results being straightforward, further
details are hence omitted here.
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