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THE FEKETE-SZEGO PROBLEM FOR A CLASS DEFINED BY
THE HOHLOV OPERATOR

A. K. MISHRA AND T. PANIGRAHI

ABSTRACT. Let A be the class of analytic functions in the open unit disk U.
For complex numbers a,b and ¢ (¢ # 0,—1,—2,....), let Ig’b be the operator defined
on A by

(ZEP())(2) = z2F1(a, by 65 2) * f(2)
where 2 F(a, b; c; 2) is the Gaussian hypergeometric function. The function f in A

is said to be in the class k — SP®? if Zg’b(f) is a k-parabolic starlike function. For
this class the Fekete-Szego problem is settled in the present paper.

2000 Mathematics Subject Classification: 30C45, 33C15.

1. INTRODUCTION AND DEFINITIONS

Let A be the class of functions analytic in the open unit disk
U:={z:z€Cand |z] <1}

and let Ay be the family of functions f in A satisfying the normalization condition
(cf.[3]): /
F(0) = f1(0)—1=0,

Thus, the functions in Ag are given by the power series
o0
f(2) :z—i—Zanz" (z el). (1)
n=2

Let S denote the class of analytic univalent functions in U. For fixed k (0 < k < 00),
the function f € Agissaid to be in k- UCV, the class of k- uniformly convex functions
in U, if the the image of every circular arc 7 contained in U, with center £ where [¢] <
k, is a convex arc. This interesting unification of the concepts of univalent convex
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functions (cf.[3]) and uniformly convex functions (cf.[5]) is due to Kanas and Wis-
niowska [8].

The class k- SP, consisting of k-parabolic starlike functions is defined from k-
UCY via the Alezander’s transform (see [9]) i-e

fek—-UCY & gek— 8P, where g(z) = 2f'(2) (z €U).

The one variable characterization theorem (cf.[8]) of the class k- UCV gives that
f € k—UCV(respectively f € k — SP) if and only if the values of

2f"(2) 2f'(2)
f'(2) e

lie in the conic region £ in the w- plane, where

p(z) =1+

> (zel)

(respectively

Qo ={w=u+iveC:u?>k*(u—-172+k%% u>0 0<k < oo}

For details of the geometric description of € see([8,9]).
If f and g are functions in A and given by the power series

Zanz and ¢g(z anz (z el),

then the Hadamard product (or convolution) of f and g denoted by f x g is defined
by

[e.e]

(f*9)(2) =Y anbpz" = (g% f)(2) (2 €U).

n=0

For complex numbers a, b and ¢ (¢ # 0, —1, -2, ...) the Gaussian hypergeometric
function 9Fy(z) is defined by

_ e (@)n(B)n ab  a(a+ 1)b(b+1) 22
o F1(2) = QFl(a,b,c,z)—T;)(c)n(l)n =1+—2+ Gern @t (2)

where (), is the Pochhamer symbol or shifted factorial, written in terms of the
gamma function T', by

LRSI n=0

(Mn = ey AA+1)A+n—1), neN:={1,23, ...}

Note that 2 F1(z) is symmetric in a and b and that the series (2) terminates if at
least one of the numerator parameters a and b is zero or a negative integer. Using
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Gaussian hypergeometric series Hohlov (cf.[6]) introduced and studied the linear
operator T8 : Ay — Ao defined by

(Ze*(f)(2) = z2F1(a,b¢:2)  f(2),  (f € Ao,z €U).

Observe that for the function f of the form (1), we have

a,b 2)=2z 3 7(a)n_1(b)”_la z" z
EHE =+ 3 (I s G el )

The Hohlov operator Z¢ ® ynifies several previously well studied operators. Namely

I

o I (f) = zf'(2)= A(f) is the Alexander transformation, where as Z,"' (f) =

Ji 48

o i dt is its inverse transform (see[3]);

I§’2(f) = L(f) is the Libera integral operator (see[24]);

Iiﬁ;l(f) = B(f) is the Bernardi integral operator (see[24]);

Iﬁil(f) = TZ,(f) is the Noor integral operator of order n (see[14-16]);

o Z;"TH(f) = D"(f) (n > —1) is the Ruscheweyh derivative of f of order n
(see[19,20));

I&Y(f) = L(a, ¢)(f) is the Carlson -Shaffer operator (see[24]);

o 122’_1)\(]") = Q*(f) is the Owa- Srivastava operator (see[17]).

In this sequel to earlier work on the classes k- UCV and k- SP, we now define a new
subclass of analytic functions by using the Hohlov operator Z¢ b,

Definition 1: The function f € Ay is said to be in the class k — SP** (0 < k <
00, a, b, ceR, c# 0,—1,-2,....) if Ig’b(f) € k — SP or equivalently

—11, (z el). (4)

T8 (£)(2) T (f)(2)

In the particular case k = 1, we denote by 5732”’ the class 1 — SP;"”. We note
that, by specializing the parameters k, a,b and ¢ we obtain the following subclasses
studied by various authors.

efork=1,a=2,b=1,¢c=1,1- 877%’1 := UCYV, the class of uniformly
convex functions has been studied by Goodman [5] and Ma and Minda [11].
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efork=1,a=1b=1,c=2,1 —SPé’l := SP, the class of parabolic starlike
functions has been studied by Rgnning [18];

efork=1,a=2 b=1,c=2-X(0<X<1), the class 1 — SPY', := SP)
has been studied by Srivastava and Mishra [21];

efora=2 b=1,c=2-)(0<\<1), the class k — SPy', := k — SP) has
been studied by Mishra and Gochhayat [12];

o fora=2,b=1, c=n+1, the class k —SPi’}rl := k—UCV;, has been studied
by Mishra and Gochhayat [13].

In the particular cases k =0, a =2, b=1, ¢ =1, we get 0 — 377?’1 := CV, the class
of univalent convex functions [3]. Similarly, taking k =0, a =1, b=1, ¢ = 2, we
have 0 — SP3" := 8*, the class of univalent starlike functions [3].

It is well known (cf.[3]) that for f € S and given by (1), the sharp inequality
las —a3| < 1 holds. Fekete and Szegé [4] obtained sharp upper bounds for |pa3 — as|
for f € S when p is real. Thus the determination of sharp upper bounds for the
nonlinear functional |ua3 — a3| for any compact family F of functions in Ay is
popularly known as the Fekete-Szego problem for F . For different subclasses of S
, the Fekete-Szegd problem has been investigated by many authors including [4,11-
13,21-23] etc. For a brief history of the Fekete-Szego problem see([23]).

In the present paper the Fekete-Szego problem for the class k& — SPZ’b (0<k<
o0, a, b, ceR, c#0,-1,-2,...., a, b # 0,—1) is settled completely. For particular
values of a, b, ¢ and k, our result include the results found in [11-13,21]. The
following definitions, notations and results shall be useful for the presentation of our
results.

The Jacobi elliptic integral (or normal elliptic integral) of first kind (cf.[1], [2], also
see [24,p.50]) is defined by

w dzx
Flwt) = /0 s 0<i<y (5)

The function F(1,t) := K(t) is called the complete elliptic integral of the first kind.
Changing to the variable ¢ = v/1 —t2, t € (0,1), we write K'(¢) := IC(¢'). It should
be emphasized here that the symbol /(prime) does not stand for derivative. The
following properties of IC(¢) and K'(t) are well known (cf.[7]).

T
lim K£(t) = = lim K(t) = oo.
A=y Ip ko=
Moreover the function
T K'(t)

W)= 5 (€ 0.D)
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strictly decreases from oo to 0 as t moves from 0 to 1. Therefore every positive
number k can be expressed as

k = cosh(v(t)) (6)

for some unique ¢ € (0,1). Finally we introduce the following functions which will
be used in the discussion of sharpness of our results. Define the function G on U by

G(z) = [z2F1(c, b a; 2)] * {z exp (/OZ C_Ik(Cz—l

where ¢, is the Riemann map of U onto € satisfying ¢x(0) = 1 and ¢, (0) > 0.
Finally define the the function v(z,6,n) in k — SP%" by

dg) } (z e U), (7)

P eie
Bt = aRilebias)] e (7 o S652) 1)%) @
0<f<2r; 0<n<1).

Note that 9(z,0,1) = G(z) defined by (1.7) and (2, 6,0) is an odd function.

2. PRELIMINARY LEMMAS

We need the following results in our investigation.

Lemma 1. [7] Let k € [0,00) be fized and gy, be the Riemann map of U onto Uy,
satisfying qr(0) = 1 and ¢, (0) > 0. If

@(z) =14+ Qi(k)z + Qa(k)2* + ..., (2 €U), 9)
then
A2,
%ﬁ’ 0<k<1,
Qu(k) == { =2 k=1
n? ; k>1
4(2—1)C2()VE(1+t)’ ’
and
Q2(k) == D(k)Q1(k)
where
@; 0< k<1,
D(k)={ % k=1,
(42 (t) (246t +1)—72) B> 1
2412 ()t (1+t) ’
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A= 2 arccos k (10)

™

and K(t) is the complete elliptic integral of first kind.

Lemma 2. [10] Let the Schwarz function w(z) be given by
w(z) = dyz + do2® + ..., (z el). (11)
Then for any complex number s,

|dy = sdi| <1+ (|s] = 1)]da]*. (12)

3. THE FEKETE-SZEGO INEQUALITIES

The following calculations shall be used in each of the proofs of Theorems 1 ,2 3
and 4 (below).

By Definition 1 there exists a function w € A satisfying the conditions of the
Schwarz lemma such that

AT (2))
T f(2)

where g is the function defined as in Lemma 1. Suppose

=a(w(z)  (zel), (13)

w(z) =diz 4+ do2® + ..., (z €U).
Substituting this in the series (9) we get

ar(w(2)) = 1+ Q1(k)drz +{Q1(k)dz + Q2 (k)dT}2* + ..... (14)

For brevity of notation, throughout, we shall write Q1 := Q1(k), Q2 := Q2(k) and
D := D(k). Using the expansion (3) and (14) in (13) and equating coefficients we
find that c
az = %Qldl (15)
and
c(e+1)
abla+1)(b+1)

ab
as = Q2 di + Q1 d2+?Q1 dy az| . (16)
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We have the following:

Theorem 1. Let the function f given by (1) be in the class k — SP¥* (0 <
k< oo, a, b, ceR, a, b, c>0).

Then
c(c+1) (a+1)(b+1)c
ab(a+1)(b+1) Ql [ ab( C+1 Q1 p—Q1— } w> o
+1)
a3 — as| < § G @ az <p<ap (17)
c(ctl) (a+1)(b+1)c
a1+ @1 [Q1+D WQl M} p< ag

where Q1 := Q1(k) and D := D(k) are defined as in Lemma 1 ;

ab(c+1) [1+Q1+D}

= k) = 1
aq O[l( ) (CL+ 1)(b+ ].)C Ql ( 8)
" bet1) [@u+D 1]
ao(c + 1+D—
az=oaB) =T e o (19)
Each of the estimates in (17) is sharp.
Proof. Putting the values of ay and Q2 := D@ in (16), we have
c(e+1) 2 2
= di +ds + Dd
where D := D(k) is as in Lemma 1. Therefore
2
2 " 202 c(c+1) 2 2
—a3| = |55 - di + do + Dd
|,l£a2 CL3| a2h2 Q1d1M ab(a T 1)(b T 1) Ql [Ql 1+ d2+ 1]
e+ 1) (a 16+ Ve )
= - —D—1¢d di —d 2
b+ b1 @ ‘{ abler1)  GrHT@ bt + (df o)) (20)

c(c+1) 0 { (a+1)(b+1)c
abla+ 1)(b+1) ab(c + 1)

If 4 > a1, the expression inside the first modulus symbol on the right hand side of
(21) is non negative. An application of Lemma 2 gives

c(e+1) (a+1)(b+1)c
ab(a+1)(b+1) Ql{ ( ab(c+1)

Qip—Q1—D~— 1‘ |d%|+!d%—d2!}- (21)

|pas — as| <

Q1 M—Ql—D—1)1+1}
(22)
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B clc+1)
~abla+1)(b+1) Ql{

(a+1)(b+1)c
ab(c+1)

Q11— Q1 - D}.
This is precisely the first part of the assertion(17).

Next, suppose p < ay where ay is given by (19). We rewrite (20) as

clc+1)
abla+1)(b+1)

(a+1)(b+ 1)c

@ ab(c+1)

a3 — as| = . (23)

d2+<Q1+D— Qlﬂ)d%

An application of the inequality |d2| < 1 — |d1]? of Lemma 2 gives

clc+1)
bla+1)(b+1

(a+1)(b+ 1)c
ab(c+1)

)Q1{ <Q1+D— Q1 M) !d%!—i—l—ldfl}

(24)

2
— <
|pas —as3| < a

B c(e+1)
T abla+ D)(b+ 1) @ (Q1+D_

Applying Lemma 2 again we get

a3 — az| < ab(ac—(i—cl—;(?—i— 0 Q1 (Ql +D - W Q1 u) (25)

which is the third part of the inequality in (17).
Observe that if as < p < a; then

(a+1)(b+ 1)c
ab(c+1)

Q1 p— 1) i + 1}-

(a+1)(b+ 1)c

QD= e

Therefore (24) gives

c(c+1)
abla+1)(b+1)

c(e+1)
bla+1)(b+1)

a3 — as) < Quf1— 1% + |}l } = - Qi (27)
We get the second part of the estimate in (17).

Next we discuss the sharpness of the estimates in (17).

If 4 > ay then equality holds in (17) if and if equality holds in (22). This happens
if and only if |d1| = 1 and |d? — da| = 1. Thus w(z) = 2. Equivalently, the extremal
function is G(z) defined by (7) or one of its rotations. However, i = aq, is equivalent

v (a+1)(b+1)c

(c+1)
Therefore equality holds true in (22) if and only if |d? — da| = 1 in (21) . Thus

Qru—Q—D-1=0.

e?2(z +dy)

wE) = +diz

; (0<|di] <1,z €U)
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for suitable values of 0 (e.g § = m—2argd;) and the extremal functions are ¥(z, 6, d;)
defined by (8) and d; is any complex number with 0 < |dy| < 1. Next, if pu < g
then equality holds in (25) if and only if d2 = —1 and d2 = 0 in (20) if and only if
di = €'z or dy = 'S which also gives do = 0. Thus w(z) = € 2 where 0 = Forfd=
37” and the extremal functions are 1(z,6,1) or one of the rotation. Also, u = aq is
equivalent to

(a+1)(b+1)c

ab(c+1)

Therefore, equality holds in (25) if and only if argds = 2argd; and |da| = 1 — |dy|?.
Thus the extremal function is 1 (e?2,0,1), (0 < 6 < 27,0 < 5 < 1). Lastly
if s < p < a1, then equality holds true if |di| = 0 and |d2|] = 1 . Therefore
w(z) = €% and the extremal function is ¢ (e?z,0,0). The Proof of Theorem 1 is
complete.

Putting the values of Q1 := @Q1(k) and D := D(k) from Lemma 1 in Theorem 1 for
0<k<1, k=1 and k > 1 respectively we get the following results:

Q1+ D — Qi p=1

Theorem 2. Let the function f given by (1) be in the class k — SP®* (0 < k <
1, a, b, ¢>0). Then

2¢(c+1) A2 2(a+1)(b+1)c A2 242 A%42
ab(a+1)(b+1) (1—k2) ( ab(c+1) C(l_kz) =1z — 3+ > y 1= p1
2c(c+1 2
‘Mag - 03‘ < ab(ail—)i_(bzrl) (lékZ)’ p2 < 1< p1 (28)

2c(c+1) A? 242 | A242 _ 2(a+1)(b+l)c A2
ab(a+1)(b+1) (1—-k?) <1fk2 + o - ab(c+1)  (1-k?) “)’ o< P2

where
ab(c+1 1—k? 24 A% +2
Ly abletl)  (1-kY) (247 A242
p2_p2(k)_2(a+l)(b+1)c A2 <1—]{32+ 3 1> (30)

and the constant A is given by (10). Each of the estimates in (28) is sharp.

Theorem 3. Let the function f given by (1) be in the class SPY® (a, b, ¢ €
R, a, b, ¢>0). Then

16¢(c+1) 4(a+1)(b+1)c 4
ab(a+1) b+ D)7 ( ab(c+m? KT 77— %) , (1= Br)
a3 — as| < %’ (Bo << pBr)  (31)
16¢(c+1) 4 1 4(a+1)(b+1)c
W(F+§_Wﬂ>’ (1 < B2)
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where
_ab(c+1) 52
B = G D+ e (24 * 1) (32)
and
_ab(c+1) w2
bz = (a+1)(b+1)c <1 ; 24) ’ (33)

Each of the estimates in (31) is sharp.

Theorem 4. Let the function f given by (1) be in the class k- SP* (k >
1,a,b,c >0). Then

ab(ac+cl+1b+1 Q1 ( a;rbl()éﬂl Q1 pn—Q1— B(t )) > 01
|pas — as| < #Jr(lbﬂ) Q1, oo <pu<h (34)

c(c a+1)(b c
b(a+1+1b+1 Q1 (Q1+B() %Ql ,U)7 < 02

where K(t) is the complete elliptic integral of the first kind , Q1 = Q1(k) is given
in (9),

42 () (12 + 6t + 1) — w2

PO ="emviay
~able+1) (14 Q1+ B(t))
YT+ Db+ e Q1 (35)
and
5y = ab(c+1) (@1 —1+ B(t))' (36)

(a+1)(b+1)c Q1
Fach of the estimates in (34) is sharp.

Remark 1. Our Theorems 2,3 and 4 include several previous results for special
values of k, a, b and c. For example, takinga =2, b=1landec=2-X (0< A< 1)
in Theorems 2 and 4 we get the Fekete- Szego inequalities for the class k — SP
respectively for 0 < k < 1 and k > 1 [12]. The Fekete- Szegd inequalities for the
classes of k- parabolic starlike functions and k- uniformly convex functions (0 < k <
1, & > 1) correspond to the special cases A = 0 and A = 1 of the above. Similarly,
the choice ¢ = 2, b = 1 and ¢ = 2 — A in Theorem 3 gives results of Srivastava
and Mishra [21] for the class SP). By takinga =2, b=1and ¢ = n+ 1 we get
results for a class k — UCV),, studied recently in [13]. The Fekete-Szegé inequalities
for the class of uniformly convex functions are also included in our Theorem 3 for the
particular values a = 2, b =1 and ¢ = 1. The classical results of Keogh and Merkes
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[10] on the Fekete- Szegd inequalities for the classes of univalent starlike functions
and univalent convex functions are included in our Theorem 2 in the particular cases
k=0,a=2,b=1,c=2and k=0, a=2,b=1, ¢ =1 respectively.

4. IMPROVEMENTS OF THE MAIN RESULTS

In this section we discuss some improvements of the second part of assertion in
(17).
Remark 2. The second inequality in (17) can be improved as follows:

clc+1)
ab(a+1)(b+1)

\ua3 — as| + (u — as)las|® < Q1, as < p<as (37)

and

c(c+1)

datnprn O @sesen (39)

lna3 — as| + (o1 — p)ag|? <

where ag is given by

ab(c+1) (Q1+ D)
(a+1)b+1)c Q1

ag = ag(k) =

Proof. Suppose 0 < k < oo and ag < p < a3 . Using (23) for |ua3 — as| and
putting the value of as we have

b 1 D—-1
bl e s e D@D Dy

(a+1)(b+ 1)e
ab(c+ 1)

¢ 2| 72
}CLQbZ Ql’d1’

cle+1)
S et DEID o ’Qlw—
{_ ablc+1) (@1 +D—-1)
(a+1)(b+1)c Q1

Q1 u‘ A+ |dal}

B c(e+1) (a+1)(b+1)c 9
= a1 Ql{’d2’ + ‘QH—D— Taber 1) Q1 M‘ |di
(a+1)(b+1)c
(ab(c—i—l) Q1 p—Q1—D+ 1) |d1|2}- (39)
Observe that , since u < ag
O1+D— (a+1)(b+ 1)c Q1 1> 0.

ab(c+1)
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Therefore applying Lemma 2 in (39) we get

clc+1)
ab(a+1)(b+1)
clc+1)

= darDorn O eswesa (40)

Q11 — |d1|* + |d1[?]

\paz — as| + (1 — ag)|as* <

This establishes (37).
Similarly the estimate in (38) can be established.

Remark 3. By putting the values of Q1(k) and D(k) for 0 < k < 1 in (37) and
(38) the second part of the estimate in (28) can be improved as follows:

2c(c+1) A?

2_ — 2 < <u<
|:ua2 a3| + (,LL PZ)‘a2| = ab(a+ 1)(b+ 1) (1 — ]{52)’ P2 > B> p3
and
2c(c+1) A?
2 _ _ 2 <~ <p<
‘,U,G,Q CL3‘—|—(p1 ,U,)|CL2’ = ab(a—i—l)(b—i— 1) (1—]412)7 P3 = B> P1,

where p3 is given by

_ab(c+1) (1—k?)
= e (O )

Remark 4. By putting the values of Q1 (k) and D(k) for £k =1 in (37) and (38)
the second part of the assertion in (31) can be improved as follows:

8c(c+1)
bla+1)(b+ 1)72’

|wa3 — as| + (1 — Ba)|az|? < - Bo < <P

and
8c(c+1)

ab(a +1)(b+ 1)mw2’

|uaz — as| + (p1 — p)las|* < B3 < p < P,

where (3 is given by
Bs =

72 3

Remark 5. By putting the values of Q1 (k) and D(k) for £ > 1 in (37) and (38)
the second part of the assertion in (34) can be improved as follows:
c(c+1)n?
dab(a +1)(b+ 1)(k2 — D)K2(t)V(1 + 1)

|wa3 — as| + (1 — 62)|as]* <
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and

c(c+1)m?
4ab(a +1)(b+ 1) (k2 — D2(t)VE(1 + 1)’

|na3 — as| + (61 — p)az|? <

where 03 is given by

ab(c + 1) (1 2 (K2(t)(t2 + 6t + 1) — 72 (k2—1)>.

5T (a+ Db+ e 32
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