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ON |(N, p, q)(E, 1)|k SUMMABILITY
OF ORTHOGONAL SERIES

Xhevat Z. Krasniqi

Abstract. In this paper we obtain some sufficient conditions on |(N, p, q)(E, 1)|k,
(1 ≤ k ≤ 2), summability of an orthogonal series. These conditions are expressed in
terms of the coefficients of the orthogonal series. Several important results are also
deduced as corollaries.
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1. Introduction

Let {pn} and {pn} be two sequences of constants, real or complex, such that

Pn = p0 + p1 + p2 + · · ·+ pn =
n∑

v=0

pv,

Qn = q0 + q1 + q2 + · · ·+ qn =
n∑

v=0

qv,

Rn = p0qn + p1qn−1 + · · ·+ pnq0 =
n∑

v=0

pvqn−v.

For two given sequences {pn} and {pn} the convolution (p ∗ q)n is defined by

Rn := (p ∗ q)n :=
n∑

v=0

pn−vqv.

Let
∑∞

n=0 an be a given infinite series with the sequence of its n−th partial sums
{sn}. We write

tp,q
n =

1
Rn

n∑
v=0

pn−vqvsv.
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If Rn 6= 0 for all n, the generalized Nörlund transform of the sequence {sn} is the
sequence {tp,q

n }.
If tp,q

n → s, as n →∞, then the series
∑∞

n=0 an is summable to s by generalized
Nörlund method [1] and is denoted by

sn → s(N, p, q).

The necessary and sufficient conditions for (N, p, q) method of summability to
be regular are

n∑
v=0

|pn−vqv| = O(|Rn|),

and pn−v = o(|Rn|), as n →∞, for every fixed v ≥ 0, for which qv 6= 0.
The infinite series

∑∞
n=0 an is said to be absolutely summable (N, p, q) if the

series
∞∑

n=1

|tp,q
n − tp,q

n−1|

converges, and we write in brief

∞∑
n=0

an ∈ |N, p, q|.

The |N, p, q| method of summability was introduced by Tanaka [5].
Let {ϕn(x)} be an orthonormal system defined in the interval (a, b). We assume

that f(x) belongs to L2(a, b) and

f(x) ∼
∞∑

n=0

cnϕn(x), (1)

where cn =
∫ b
a f(x)ϕn(x)dx, (n = 0, 1, 2, . . . ).

We write

Rj
n :=

n∑
v=j

pn−vqv, Rn+1
n = 0, R0

n = Rn.

Regarding to the series (1) Okuyama [6] has proved the following two theorems.

Theorem 1.1. If the series

∞∑
n=1

{
n∑

j=1

(
Rj

n

Rn
−

Rj
n−1

Rn−1

)2

|cj |2
} 1

2
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converges, then the orthogonal series
∞∑

n=0

cnϕn(x)

is summable |N, p, q| almost everywhere.

Theorem 1.2. Let {Ω(n)} be a positive sequence such that {Ω(n)/n} is a non-
increasing sequence and the series

∑∞
n=1

1
nΩ(n) converges. Let {pn} and {qn} be

non-negative. If the series
∑∞

n=1 |cn|2Ω(n)w(n) converges, then the orthogonal series∑∞
n=0 cnϕn(x) ∈ |N, p, q| almost everywhere, where w(n) is defined by

w(j) := j−1
∞∑

n=j

n2

(
Rj

n

Rn
−

Rj
n−1

Rn−1

)2

.

Further, we denote by

E1
n =

1
2n

n∑
v=0

(
n

v

)
sv

the Euler transform of the sequence {sn}.
If E1

n → s, as n →∞, then the series
∑∞

n=0 an is said to be (E, 1) summable to
s [2].

The composition of the tp,q
n mean with E1

n mean is defined by equality

tp,q;E
n =

1
Rn

n∑
v=0

pn−vqvE
1
v

=
1

Rn

n∑
v=0

pn−vqv

2v

v∑
j=0

(
v

j

)
sj .

If tp,q;E
n → s, as n → ∞, then the series

∑∞
n=0 an is said to be (N, p, q)(E, 1)

summable to s [3].
We introduce the concept of the absolute (N, p, q)(E, 1) summability of order k,

(k = 1, 2, . . . ), with the following definition.
The infinite series

∑∞
n=0 an is said to be absolutely summable |(N, p, q)(E, 1)|k

if for k ≥ 1 the series
∞∑

n=1

nk−1|tp,q;E
n − tp,q;E

n−1 |
k

converges, and we write
∞∑

n=0

an ∈ |(N, p, q)(E, 1)|k.
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The main purpose of the present paper is to study the |(N, p, q)(E, 1)|k summa-
bility of the orthogonal series (1) for 1 ≤ k ≤ 2.

Throughout K denotes a positive constant that it may depends only on k, and
be different in different relations.

The following lemma due to Beppo Levi (see, for example [4]) is often used in
the theory of functions. It will need us to prove main results.

Lemma 1.3. If fn(t) ∈ L(E) are non-negative functions and

∞∑
n=1

∫
E

fn(t)dt < ∞, (2)

then the series
∞∑

n=1

fn(t)

converges almost everywhere on E to a function f(t) ∈ L(E). Moreover, the series
(2) is also convergent to f in the norm of L(E).

2. Main Results

First we put

Hµ
v :=

1
2v

v∑
j=µ

(
v

j

)
and R

µ
v := Hµ

v Rµ
v .

We prove the following theorem.

Theorem 2.1. If the series

∞∑
n=1

{
nk−1

n∑
µ=1

(
R

µ
n

Rn
−

R
µ
n−1

Rn−1

)2

|cµ|2
} k

2

converges for 1 ≤ k ≤ 2, then the orthogonal series

∞∑
n=0

anϕn(x)

is summable |(N, p, q)(E, 1)|k almost everywhere.
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Proof. Let 1 < k < 2. For the tp,q;E
n (x) transform of the partial sums sj =∑j

µ=0 cµϕµ(x) of the orthogonal series
∑∞

µ=0 cµϕµ(x) we have that

tp,q;E
n (x) =

1
Rn

n∑
v=0

pn−vqv

2v

v∑
j=0

(
v

j

) j∑
µ=0

cµϕµ(x)

=
1

Rn

n∑
v=0

pn−vqv

v∑
µ=0

cµϕµ(x)
1
2v

v∑
j=µ

(
v

j

)

=
1

Rn

n∑
v=0

pn−vqv

v∑
µ=0

Hµ
v cµϕµ(x)

=
1

Rn

n∑
µ=0

Hµ
ncµϕµ(x)

n∑
v=µ

pn−vqv

=
Rn

n∑
µ=0

Hµ
nRµ

ncµϕµ(x)

=
1

Rn

n∑
µ=0

R
µ
ncµϕµ(x).

Since

R
0
n

Rn
−

R
0
n−1

Rn−1
=

H
0
nR0

n

Rn
−

H
0
n−1R

0
n−1

Rn−1
=

1
2n

n∑
j=0

(
n

j

)
− 1

2n−1

n−1∑
j=0

(
n− 1

j

)
= 0,

then

4̄tp,q;E
n (x) := tp,q;E

n (x)− tp,q;E
n−1 (x)

=
1

Rn

n∑
µ=0

R
µ
ncµϕµ(x)− 1

Rn−1

n−1∑
µ=0

R
µ
n−1cµϕµ(x)

=
1

Rn

n∑
µ=0

R
µ
ncµϕµ(x)− 1

Rn−1

n∑
µ=0

R
µ
n−1cµϕµ(x)

=
n∑

µ=1

(
R

µ
n

Rn
−

R
µ
n−1

Rn−1

)
cµϕµ(x).

Using the orthogonality, and Hölder’s inequality with p = 2
k > 1 and q such that

191



Xh. Z. Krasniqi - On |(N, p, q)(E, 1)|k summability of orthogonal series

p + q = pq, we obtain

∫ b

a
|4̄tp,q;E

n (x)|kdx ≤ (b− a)1−
k
2

(∫ b

a
|tp,q;E

n (x)− tp,q;E
n−1 (x)|2dx

) k
2

= (b− a)1−
k
2

[
n∑

µ=1

(
R

µ
n

Rn
−

R
µ
n−1

Rn−1

)2

|cµ|2
] k

2

.

Whence, the series

∞∑
n=1

nk−1

∫ b

a
|4̄tp,q;E

n (x)|kdx ≤ K

∞∑
n=1

nk−1

[
n∑

µ=1

(
R

µ
n

Rn
−

R
µ
n−1

Rn−1

)2

|cµ|2
] k

2

(3)

converges since the last does by the assumption. From this fact and since the
functions |4̄tp,q;E

n (x)| are non-negative, then by the Lemma 1.3 the series

∞∑
n=1

nk−1|4̄tp,q;E
n (x)|k

converges almost everywhere. The theorem for k = 1, 2 can be proved in a same
way. Namely, for k = 2 we apply only the orthogonality, until for k = 1 we apply
Schwarz’s inequality. This completes the proof of the theorem.

We can specialize the sequences {pn} and {qn} so that |(N, p, q)(E, 1)|k summa-
bility method reduces to some particular methods of the absolute summability. Most
important particular cases of the |(N, p, q)(E, 1)|k summability method are:

1) If qn = 1 for all n, then |(N, p, q)(E, 1)|k summability reduces to |(N, pn)(E, 1)|k
summability;

2) If pn = 1/(n + 1) and qn = 1 for all n, then |(N, p, q)(E, 1)|k summability
reduces to |(N, 1/(n + 1))(E, 1)|k summability;

3) If pn = 1 for all n, then |(N, p, q)(E, 1)|k summability reduces to |(N, qn)(E, 1)|k
summability;

4) If pn =
(
n+α−1

α−1

)
, α > 0, and qn = 1 for all n, then |(N, p, q)(E, 1)|k summability

reduces to |(C,α)(E, 1)|k summability.
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From theorem 2.1, for three of the above cases, we have the following corollaries
(the fourth one can be discussed in a similar way).

Corollary 2.2. If the series

∞∑
n=1

{
nk−1

n∑
µ=1

(
Hµ

nPn−µ

Pn
−

Hµ
n−1Pn−1−µ

Pn−1

)2

|cµ|2
} k

2

converges for 1 ≤ k ≤ 2, then the orthogonal series

∞∑
n=0

anϕn(x)

is summable |(N, pn)(E, 1)|k almost everywhere.

Corollary 2.3. If the series

∞∑
n=1

{
nk−1

n∑
µ=1

[
Hµ

n

(
1− µ

n + 1

)
−Hµ

n−1

(
1− µ

n

)]2

|cµ|2
} k

2

converges for 1 ≤ k ≤ 2, then the orthogonal series

∞∑
n=0

anϕn(x)

is summable |(N, 1/(n + 1))(E, 1)|k almost everywhere.

Corollary 2.4. If the series

∞∑
n=1

{
nk−1

n∑
µ=1

[
Hµ

n

(
1− Qµ−1

Qn

)
−Hµ

n−1

(
1− Qµ−1

Qn−1

)]2

|cµ|2
} k

2

converges for 1 ≤ k ≤ 2, then the orthogonal series

∞∑
n=0

anϕn(x)

is summable |(N, qn)(E, 1)|k almost everywhere.

Now we shall prove a general theorem concerning to |(N, p, q)(E, 1)|k summabil-
ity of an orthogonal series which involves a positive sequence with some additional
conditions.
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To do this first we put

Q(k)(µ) :=
1

µ
2
k
−1

∞∑
n=µ

n
2
k

(
R

µ
n

Rn
−

R
µ
n−1

Rn−1

)2

(4)

then the following theorem holds true.

Theorem 2.5. Let 1 ≤ k ≤ 2 and {Ω(n)} be a positive sequence such that
{Ω(n)/n} is a non-increasing sequence and the series

∑∞
n=1

1
nΩ(n) converges. Let

{pn} and {qn} be non-negative. If the series
∑∞

n=1 |an|2Ω
2
k
−1(n)Q(k)(n) converges,

then the orthogonal series
∑∞

n=0 anϕn(x) ∈ |(N, p, q)(E, 1)|k almost everywhere,
where Q(k)(n) is defined by (4).

Proof. Applying Hölder’s inequality to the inequality (3) we get that
∞∑

n=1

nk−1

∫ b

a
|4̄tp,q;E

n (x)|kdx ≤

≤ K
∞∑

n=1

nk−1

[
n∑

µ=1

(
R

µ
n

Rn
−

R
µ
n−1

Rn−1

)2

|cµ|2
] k

2

= K
∞∑

n=1

1

(nΩ(n))
2−k
2

[
n (Ω(n))

2
k
−1

n∑
µ=1

(
R

µ
n

Rn
−

R
µ
n−1

Rn−1

)2

|cµ|2
] k

2

≤ K

( ∞∑
n=1

1
(nΩ(n))

) 2−k
2
[ ∞∑

n=1

n (Ω(n))
2
k
−1

n∑
µ=1

(
R

µ
n

Rn
−

R
µ
n−1

Rn−1

)2

|cµ|2
] k

2

≤ K

{ ∞∑
µ=1

|cµ|2
∞∑

n=µ

n (Ω(n))
2
k
−1

(
R

µ
n

Rn
−

R
µ
n−1

Rn−1

)2} k
2

≤ K

{ ∞∑
µ=1

|cµ|2
(

Ω(µ)
µ

) 2
k
−1 ∞∑

n=µ

n
2
k

(
R

µ
n

Rn
−

R
µ
n−1

Rn−1

)2} k
2

= K

{ ∞∑
µ=1

|cµ|2Ω
2
k
−1(µ)Q(k)(µ)

} k
2

,

which is finite by assumption. Using again the Lemma 1.3 we obtain the proof of
the theorem.

Remark 2.6.It should be noted that from Theorem 2.5 one also can obtain the
versions of the corollaries 2.2–2.4.
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