CERTAIN DIFFERENTIAL SUBORDINATIONS USING SĂLĂGEAN AND RUSCHEWEYH OPERATORS

Alina Alb Lupaş

ABSTRACT. In the present paper we define a new operator using the Sălăgean and Ruscheweyh operators. Denote by SR^n the Hadamard product of the Sălăgean operator S^n and the Ruscheweyh operator R^n , given by $SR^n: A \to A$, $SR^nf(z) = (S^n * R^n) f(z)$ and $A_n = \{f \in \mathcal{H}(U), f(z) = z + a_{n+1}z^{n+1} + \ldots, z \in U\}$ is the class of normalized analytic functions with $A_1 = A$. We study some differential subordinations regarding the operator SR^n .

2000 Mathematics Subject Classification: 30C45, 30A20, 34A40.

Keywords and phrases: Differential subordination, convex function, best dominant, differential operator.

1. Introduction

Denote by U the unit disc of the complex plane $U = \{z \in \mathbb{C} : |z| < 1\}$ and $\mathcal{H}(U)$ the space of holomorphic functions in U.

Let

$$A_n = \{ f \in \mathcal{H}(U), \ f(z) = z + a_{n+1}z^{n+1} + \dots, \ z \in U \}$$

with $A_1 = A$ and

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H}(U), \ f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots, \ z \in U \}$$

for $a \in \mathbb{C}$ and $n \in \mathbb{N}$.

Denote by

$$K = \left\{ f \in A, \text{ Re } \frac{zf''(z)}{f'(z)} + 1 > 0, \ z \in U \right\},$$

the class of normalized convex functions in U.

If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$, if there is a function w analytic in U, with w(0) = 0, |w(z)| < 1, for all $z \in U$ such that f(z) = g(w(z)) for all $z \in U$. If g is univalent, then $f \prec g$ if and only if f(0) = g(0) and $f(U) \subseteq g(U)$.

Let $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$ and h univalent in U. If p is analytic in U and satisfies the (second-order) differential subordination

$$\psi(p(z), zp'(z), z^2p''(z); z) \prec h(z), \qquad z \in U, \tag{1}$$

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the solutions of the differential subordination, or more simply a dominant, if $p \prec q$ for all p satisfying (1).

A dominant \widetilde{q} that satisfies $\widetilde{q} \prec q$ for all dominants q of (1) is said to be the best dominant of (1). The best dominant is unique up to a rotation of U.

Definition No. 1 (Sălăgean [4]) For $f \in A$, $n \in \mathbb{N}$, the operator S^n is defined by $S^n : A \to A$,

$$S^{0}f(z) = f(z)$$

$$S^{1}f(z) = zf'(z)$$
...
$$S^{n+1}f(z) = z(S^{n}f(z))', \quad z \in U.$$

Remark No. 1 If $f \in A$, $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$, then $S^n f(z) = z + \sum_{j=2}^{\infty} j^n a_j z^j$, $z \in U$.

Definition No. 2 (Ruscheweyh [3]) For $f \in A$, $n \in \mathbb{N}$, the operator \mathbb{R}^n is defined by $\mathbb{R}^n : A \to A$,

$$R^{0}f(z) = f(z)$$

$$R^{1}f(z) = zf'(z)$$
...
$$(n+1)R^{n+1}f(z) = z(R^{n}f(z))' + nR^{n}f(z), z \in U.$$

Remark No. 2 If $f \in A$, $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$, then $R^n f(z) = z + \sum_{j=2}^{\infty} C_{n+j-1}^n a_j z^j$, $z \in U$.

Lemma No. 1 (Miller and Mocanu [2]) Let g be a convex function in U and let

$$h(z) = g(z) + n\alpha z g'(z), \quad z \in U,$$

where $\alpha > 0$ and n is a positive integer.

If

$$p(z) = g(0) + p_n z^n + p_{n+1} z^{n+1} + \dots, \quad z \in U$$

is holomorphic in U and

$$p(z) + \alpha z p'(z) \prec h(z), \quad z \in U$$

then

$$p(z) \prec g(z)$$

and this result is sharp.

2. Main results

Definition No. 3 [1] Let $n \in \mathbb{N}$. Denote by SR^n the operator given by the Hadamard product (the convolution product) of the Sălăgean operator S^n and the Ruscheweyh operator R^n , $SR^n: A \to A$,

$$SR^n f(z) = (S^n * R^n) f(z)$$
.

Remark No. 3 If $f \in A$, $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$, then $SR^n f(z) = z +$ $\sum_{j=2}^{\infty} C_{n+j-1}^n j^n a_j^2 z^j.$

Theorem No. 1 Let g be a convex function such that g(0) = 1 and let h be the function $h(z) = g(z) + zg'(z), z \in U$. If $n \in \mathbb{N}$, $f \in A$ and the differential subordination

$$\frac{1}{z}SR^{n+1}f\left(z\right) + \frac{n}{n+1}z\left(SR^{n}f\left(z\right)\right)'' \prec h\left(z\right), \quad z \in U$$
(2)

holds, then

$$(SR^n f(z))' \prec g(z), z \in U$$

and this result is sharp.

Proof. With notation $p(z) = \left(SR^n f(z)\right)' = 1 + \sum_{j=2}^{\infty} C_{n+j-1}^n j^{n+1} a_j^2 z^{j-1}$ and

$$p(z) + zp'(z) = \frac{1}{z}SR^{n+1}f(z) + z\frac{n}{n+1}(SR^nf(z))''$$

 $p\left(0\right)=1,$ we obtain for $f(z)=z+\sum_{j=2}^{\infty}a_{j}z^{j},$ $p\left(z\right)+zp'\left(z\right)=\frac{1}{z}SR^{n+1}f\left(z\right)+z\frac{n}{n+1}\left(SR^{n}f\left(z\right)\right)''.$ We have $p\left(z\right)+zp'\left(z\right)\prec h\left(z\right)=g\left(z\right)+zg'\left(z\right),\,z\in U.$ By using Lemma 1 we obtain $p(z) \prec g(z), z \in U$, i.e. $(SR^n f(z))' \prec g(z), z \in U$ and this result is sharp.

Theorem No. 2 Let g be a convex function, g(0) = 1 and let h be the function h(z) = g(z) + zg'(z), $z \in U$. If $n \in \mathbb{N}$, $f \in A$ and verifies the differential subordination

$$\left(SR^{n}f\left(z\right)\right)' \prec h\left(z\right), \quad z \in U, \tag{3}$$

then

$$\frac{SR^{n}f\left(z\right)}{z} \prec g\left(z\right), \ z \in U$$

and this result is sharp.

Proof. For $f \in A$, $f(z) = z + \sum_{i=2}^{\infty} a_i z^i$ we have

$$SR^{n}f(z) = z + \sum_{j=2}^{\infty} C_{n+j-1}^{n} j^{n} a_{j}^{2} z^{j}, z \in U.$$

Consider
$$p(z) = \frac{SR^n f(z)}{z} = \frac{z + \sum_{j=2}^{\infty} C_{n+j-1}^n j^n a_j^2 z^j}{z} = 1 + \sum_{j=2}^{\infty} C_{n+j-1}^n j^n a_j^2 z^{j-1}.$$

We have $p(z) + zp'(z) = (SR^n f(z))', z \in U$. Then $(SR^n f(z))' \prec h(z), z \in U$ becomes $p(z) + zp'(z) \prec h(z) = g(z) + zg'(z), z \in U$. By using Lemma 1 we obtain $p(z) \prec g(z), z \in U$, i.e. $\frac{SR^n f(z)}{z} \prec g(z), z \in U$.

Theorem No. 3 Let g be a convex function such that g(0) = 1 and let h be the function $h(z) = g(z) + zg'(z), z \in U$. If $n \in \mathbb{N}$, $f \in A$ and verifies the differential subordination

$$\left(\frac{zSR^{n+1}f(z)}{SR^{n}f(z)}\right)' \prec h(z), \quad z \in U, \tag{4}$$

then

$$\frac{SR^{n+1}f(z)}{SR^{n}f(z)} \prec g(z), \ z \in U$$

and this result is sharp.

Proof. For
$$f \in A$$
, $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$ we have $SR^n f(z) = z + \sum_{j=2}^{\infty} C_{n+j-1}^n j^n a_j^2 z^j$, $z \in U$. Consider

$$p(z) = \frac{SR^{n+1}f(z)}{SR^nf(z)} = \frac{z + \sum_{j=2}^{\infty} C_{n+j}^{n+1} j^{n+1} a_j^2 z^j}{z + \sum_{j=2}^{\infty} C_{n+j-1}^n j^n a_j^2 z^j} = \frac{1 + \sum_{j=2}^{\infty} C_{n+j}^{n+j} j^{n+1} a_j^2 z^{j-1}}{1 + \sum_{j=2}^{\infty} C_{n+j-1}^n j^n a_j^2 z^{j-1}}.$$

We have

$$p'\left(z\right) = \frac{\left(SR^{n+1}f\left(z\right)\right)'}{SR^{n}f\left(z\right)} - p\left(z\right) \cdot \frac{\left(SR^{n}f\left(z\right)\right)'}{SR^{n}f\left(z\right)}.$$

Then

$$p(z) + zp'(z) = \left(\frac{zSR^{n+1}f(z)}{SR^{n}f(z)}\right)'.$$

Relation (4) becomes $p(z) + zp'(z) \prec h(z) = g(z) + zg'(z)$, $z \in U$ and by using Lemma 1 we obtain $p(z) \prec g(z)$, $z \in U$, i.e.

$$\frac{SR^{n+1}f\left(z\right)}{SR^{n}f\left(z\right)}\prec g\left(z\right),\ \ z\in U.$$

References

- [1] A. Alb Lupas, Some differential subordinations using Sălăgean and Ruscheweyh operators, Proceedings of International Conference on Fundamental Sciences, ICFS 2007, 58-61.
- [2] S.S. Miller, P.T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
- [3] St. Ruscheweyh, New criteria for univalent functions, Proc. Amet. Math. Soc., 49 (1975), 109-115.
- [4] G.St. Salagean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013 (1983), 362-372.

Alb Lupaş Alina
Department of Mathematics
University of Oradea

str. Universității nr. 1, 410087, Oradea, Romania

email: dalb@uoradea.ro