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ADAPTIVE WAVELET REGRESSION IN RANDOM DESIGN AND
GENERAL ERRORS WITH WEAKLY DEPENDENT DATA

Christophe Chesneau

Abstract. We investigate the function estimation in a nonparametric regres-
sion model having the following particularities: the design is random, the errors
admit finite moments of order two and the data are weakly dependent. In this gen-
eral framework, we construct a new adaptive estimator. It is based on wavelets and
the combination of two hard thresholding rules. We determine an upper bound of
the associated mean integrated squared error and prove that it is sharp for a wide
class of regression functions.
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1. Introduction

Let (Xi, Yi)i∈Z be a bivariate stationary random process where, for any i ∈ Z,

Yi = f(Xi) + ξi, (1)

f : [0, 1] → R is the unknown regression function, (Xi)i∈Z is a sequence of identically
distributed random variables having the common known density g : [0, 1] → [0,∞)
and (ξi)i∈Z is a sequence of identically distributed variables independent of (Xi)i∈Z
satisfying E(ξ1) = 0 and E(ξ21) < ∞. Furthermore, we suppose that (Xi, Yi)i∈Z is
a strongly mixing process (to be defined in Section 2). This dependence structure
is reasonably weak and has many practical applications (see e.g. [33], [20] and
[28]). Given n observations (X1, Y1), . . . , (Xn, Yn) drawn from (Xi, Yi)i∈Z, we aim to
estimate f globally on [0, 1].

To measure the performance of an estimator f̂ of f , we use the Mean Integrated
Squared Error (MISE) defined by:

R(f̂ , f) = E
(∫ 1

0
(f̂(x)− f(x))2dx

)
.
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Our goal is to construct f̂ such that the associated MISE is as small as possible.
Many methods can be considered (kernel, spline, wavelets,. . . ) (see e.g. [32]). In
this study, we focus our attention on the wavelet methods. They are attractive for
nonparametric function estimation because of their virtues from the viewpoints of
spatial adaptivity, computational efficiency and asymptotic optimality properties.
Further details can be found in [1] and [22].

In the literature, when (X1, Y1), . . . , (Xn, Yn) are i.i.d., various wavelet methods
have been developed. See e.g. [14-16], [17], [21], [2, 3], [4], [31], [5, 6], [7, 8], [10], [29],
[13], [34], [23] and [9]. When ξ1, . . . , ξn have some kind of dependence (long memory,
ρ-mixing,. . . ), see e.g. [18], [19], [25], [26] and [24]. To the best of our knowledge, the
wavelet estimation of f when (X1, Y1), . . . , (Xn, Yn) are weakly dependent has only
been investigated by [26] and [30]. More precisely, with a non-necessarily bounded
Y1, [26] has constructed a linear non-adaptive wavelet estimator of f which attains
a sharp rate of convergence under the uniform risk over Besov balls. Considering a
bounded Y1, [30] have developed a non-linear non-adaptive wavelet estimator of f
and studied its asymptotic MISE properties. However, the adaptive wavelet estima-
tion of f , more realistic, has never been addressed earlier and motivates this study.
In addition to this new challenge, we relax some classical assumptions on the errors:
Y1 can be non-bounded and the common distribution of ξ1, . . . , ξn can be unknown;
only E(ξ1) = 0 and E(ξ21) < ∞ are required. Furthermore, let us mention that
no “Castellana-Leadbetter”-type condition on the density of ((X0, Y0), (Xm, Ym)),
m ∈ N, is supposed.

We construct a new adaptive wavelet estimator based on the following steps:
we estimate the unknown wavelet coefficients of f by a new thresholded versions
of the empirical ones, we operate a term-by-term selection of these estimators via
a hard thresholding rule, then we reconstruct the selected estimators by taking the
initial wavelet basis and choosing appropriate levels. Naturally, the definitions of
both thresholds take into account the dependence of the data and are chosen to
minimize the associated MISE. Assuming that f belongs to a Besov balls Bs

p,q(H)
(to be defined in Section 3), we prove that our estimator f̂ satisfies

R(f̂ , f) ≤ C

(
lnnθ
nθ

)2s/(2s+1)

,

where C > 0 is a constant (independent of n), nθ = nθ/(θ+1) and θ refers to the
exponentially strong mixing case. The obtained rate of convergence is sharp.

The paper is organized as follows. Section 2 clarifies the assumptions on the
model and introduces some notations. Section 3 describes the considered wavelet
basis and the Besov balls Bs

p,q(H). Our wavelet hard thresholding estimator is
presented in Section 4. Its asymptotic performances are explored in Section 5.
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Section 6 is devoted to the proofs.

2. Assumptions on the model

• Set, for any i ∈ Z, Zi = (Xi, Yi). We suppose that Z = (Zi)i∈Z is strictly
stationary and exponentially strongly mixing. Let us now clarify this kind of
dependence.

For any m ∈ Z, we define the m-th strongly mixing coefficient of Z by

αm = sup
(A,B)∈FZ

−∞,0×FZ
m,∞

|P(A ∩B)− P(A)P(B)| ,

where FZ
−∞,0 is the σ-algebra generated by . . . , Z−1, Z0 and FZ

m,∞ is the σ-
algebra generated by Zm, Zm+1, . . .. The bivariate random process Z is said
to be strongly mixing if limm→∞ αm = 0.

The exponentially strongly mixing condition is characterized by the following
inequality: there exists three known constants, γ > 0, c > 0 and θ > 0, such
that, for any integer m ≥ 1,

αm ≤ γ exp(−cmθ). (2)

This assumption is satisfied by a large class of processes (GARCH, ARMA,
ARMA-GARCH, . . . ). See e.g. [33], [20] and [28].

Remark that, if Z = (Zi)i∈Z is a bivariate sequence of i.i.d. random variables,
we can take θ →∞.

• We suppose that there exists a known constant C∗ > 0 such that

sup
x∈[0,1]

|f(x)| ≤ C∗. (3)

• We suppose that there exists a known constant c∗ > 0 such that

inf
x∈[0,1]

g(x) ≥ c∗. (4)

3. Wavelet bases and Besov balls

Throughout the paper, we work with a compactly supported wavelet basis on
[0, 1]. A concise mathematical description of this basis is given below. Let N be
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a positive integer, and φ and ψ be the initial wavelet functions of the Daubechies
wavelets db2N . Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then, with an appropriate treatment at the boundaries, there exists a positive in-
teger τ such that the system

W = {φτ,k, k ∈ {0, . . . , 2τ − 1}; ψj,k; j ∈ N− {0, . . . , τ − 1}, k ∈ {0, . . . , 2j − 1}},

forms an orthonormal basis of L2([0, 1]) = {h : [0, 1] → R;
∫ 1
0 h

2(x)dx < ∞}. See
[11].

Any h ∈ L2([0, 1]) can be expanded on W as

h(x) =
2τ−1∑
k=0

cτ,kφτ,k(x) +
∞∑
j=τ

2j−1∑
k=0

dj,kψj,k(x),

where cj,k and dj,k are the wavelet coefficients of h defined by

cj,k =
∫ 1

0
h(x)φj,k(x)dx, dj,k =

∫ 1

0
h(x)ψj,k(x)dx. (5)

As is traditional in the wavelet estimation literature, we shall investigate the per-
formances of our estimator f̂ by assuming that the unknown regression function f
belongs to Besov balls. Their definitions are given below.

Let H > 0, s > 0, p ≥ 1, r ≥ 1 and Lp([0, 1]) = {h : [0, 1] → R;
∫ 1
0 |h(x)|

pdx <
∞}. Set, for every measurable function h on [0, 1] and ε ≥ 0, ∆ε(h)(x) = h(x +
ε) − h(x), ∆2

ε (h)(x) = ∆ε(∆εh)(x) and identically, for N ∈ N∗, ∆N
ε (h)(x) =

∆N−1
ε (∆εh)(x) = ∆ε(∆N−1

ε h)(x). Let

ρN (t, h, p) = sup
ε∈[−t,t]

(∫ 1

0
|∆N

ε (h)(u)|pdu
)1/p

.

Then, for s > 0, we define the Besov ball Bs
p,r(H) by

Bs
p,r(H) =

{
h ∈ Lp([0, 1]);

(∫ 1

0

(
ρN (t, h, p)

ts

)r
dt

t

)1/r

≤ H

}
.

Besov balls can be expressed in terms of wavelet coefficients. We have the following
equivalence: h ∈ Bs

p,r(H) with s ∈ (0, N) if and only if there exists a constant
H∗ > 0 (depending on H) such that the associated wavelet coefficients (5) satisfy(

2τ−1∑
k=0

|cτ,k|p
)1/p

+

 ∞∑
j=τ

2j(s+1/2−1/p)

2j−1∑
k=0

|dj,k|p
1/p


r

1/r

≤ H∗.
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In this expression, s is a smoothness parameter and p and r are norm parameters.
For a particular choice of s, p and r, the Besov balls contain the standard Hölder
and Sobolev balls. See [22, Chapter 9] and [27].

4. Estimators

The first step to estimate f in (1) from (X1, Y1), . . . , (Xn, Yn) consists in ex-
panding f on the wavelet basis W. Then we aim to estimate the unknown wavelet
coefficients: cj,k =

∫ 1
0 f(x)φj,k(x)dx and dj,k =

∫ 1
0 f(x)ψj,k(x)dx. The considered

estimators are described below.
Set

γn = µ

√
nθ

lnnθ
,

where nθ = nθ/(θ+1), θ is the one in (2) and µ =
√

(C2
∗ + E(ξ21))/c∗.

For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1},

• we estimate cj,k by

ĉj,k =
1
n

n∑
i=1

Yi
g(Xi)

φj,k(Xi)1I{∣∣∣ Yi
g(Xi)

φj,k(Xi)
∣∣∣≤γn

}, (6)

where, for any random event A, 1IA is the indicator function on A.

• we estimate dj,k by

d̂j,k =
1
n

n∑
i=1

Yi
g(Xi)

ψj,k(Xi)1I{∣∣∣ Yi
g(Xi)

ψj,k(Xi)
∣∣∣≤γn

}. (7)

Remark that ĉj,k and d̂j,k are thresholded versions of the standard empirical wavelet
estimators for (1) (see e.g. [14-16]). Such a thresholding has been introduced by
[13] for (1) when (X1, Y1), . . . , (Xn, Yn) are i.i.d.. In our study, it allows us to
have non restrictive assumptions on ξ1, . . . , ξn and treat the weak dependence of
(X1, Y1), . . . , (Xn, Yn).

We define the hard thresholding estimator f̂ by

f̂(x) =
2τ−1∑
k=0

ĉτ,kφτ,k(x) +
j1∑
j=τ

2j−1∑
k=0

d̂j,k1I{|d̂j,k|≥κλn}ψj,k(x), (8)

where ĉτ,k is defined by (6) with j = τ , d̂j,k by (7), j1 is the integer satisfying

1
2
nθ < 2j1 ≤ nθ,
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κ ≥ 2 + 16/(3u) + 4
√

(1/u)(16/9u2 + 2) with u = (1/2)(c/8)1/(θ+1) and

λn = µ

√
lnnθ
nθ

.

The main idea of the hard thresholding rule used in (8) is to estimate only the
“large” unknown wavelet coefficients of f (and remove the other). Indeed, they are
those which contain its main characteristics. The definition of the threshold λn is
based on theoretical consideration (see Proposition 3 below).

Let us mention that f̂ is adaptive i.e. its construction does not depend on the
smoothness parameter of f . However, it depends on the factor θ related to (2).

More details on hard thresholding estimators in wavelet estimation are given in
[22, Chapter 11].

5. Results

5.1. Auxiliary results

Propositions 1 and 2 below show moments properties for (6) and (7).

Proposition 1. Consider (1) under the assumptions of Section 2. For any
integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let dj,k =

∫ 1
0 f(x)ψj,k(x)dx and d̂j,k be

(7). Then there exists a constant C > 0 such that

E
(
(d̂j,k − dj,k)2

)
≤ C

lnnθ
nθ

.

This inequality holds with cj,k =
∫ 1
0 f(x)φj,k(x)dx instead of dj,k and ĉj,k defined by

(6) instead of d̂j,k.

Proposition 2. Consider (1) under the assumptions of Section 2. For any
integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let dj,k =

∫ 1
0 f(x)ψj,k(x)dx and d̂j,k be

(7). Then there exists a constant C > 0 such that

E
(
(d̂j,k − dj,k)4

)
≤ C.

Proposition 3 below determines a sharp concentration inequality for (7).

Proposition 3. Consider (1) under the assumptions of Section 2. For any
integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let dj,k =

∫ 1
0 f(x)ψj,k(x)dx, d̂j,k be (7)

and

λn = µ

√
lnnθ
nθ

.
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Then, for any κ ≥ 2 + 16/(3u) + 4
√

(1/u)(16/9u2 + 2) with u = (1/2)(c/8)1/(θ+1),
we have

P
(
|d̂j,k − dj,k| ≥ κλn/2

)
≤ 2(1 + 4e−2γ)

1
n4
θ

.

5.2. Main result

Theorem 1 below investigates the performance of f̂ under the MISE over Besov
balls.

Theorem 1. Consider (1) under the assumptions of Section 2. Let f̂ be (8).
Suppose that f ∈ Bs

p,r(H) with r ≥ 1, either p ≥ 2 and s ∈ (0, N) or p ∈ [1, 2) and
s ∈ (1/p,N). Then there exists a constant C > 0 such that

R(f̂ , f) ≤ C

(
lnnθ
nθ

)2s/(2s+1)

,

where nθ = nθ/(θ+1).

The proof of Theorem 1 uses a suitable decomposition of the MISE with the
results in Propositions 1, 2 and 3.

If we restrict our study to independent (X1, Y1), . . . , (Xn, Yn) i.e. θ → ∞, our
rate of convergence becomes (lnn/n)2s/(2s+1) which is the standard “near optimal”
one in the minimax sense. See e.g. [22, Chapter 11] and [13].

Note that the rate of convergence (lnnθ/nθ)2s/(2s+1) is also attained by the ab-
stract minimum complexity regression estimator in [28, Theorem 2.1] but for a
slightly different regression problem with more restrictions on (X1, Y1), . . . , (Xn, Yn),
ξ1, . . . , ξn and f (see [28, Section II.B]).

Mention that the obtained rate of convergence can perhaps be improved by con-
sidering another thresholding rule as the block thresholding ones (see e.g. [5,6] and
[9]) or with more restrictive assumption on the model as “Castellana-Leadbetter”-
type condition (see e.g. [26]). Another possible perspective of this work is to consider
the case where g is unknown. A pertinent approach could be to use warped wavelets
in the construction of our hard thresholding estimator as it is developed in [23] for
the i.i.d. case. All these aspects need further investigations that we leave for a
future work.

6. Proofs

In this section, C represents a positive constant which may differ from one term
to another.

6.1. Proof of Proposition 1
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For any i ∈ {1, . . . , n}, set

Wi,j,k =
Yi

g(Xi)
ψj,k(Xi).

Since X1 and ξ1 are independent and E(ξ1) = 0, we have

E(W1,j,k) = E
(

Y1

g(X1)
ψj,k(X1)

)
= E

(
f(X1)
g(X1)

ψj,k(X1)
)

+ E(ξ1)E(
1

g(X1)
ψj,k(X1))

= E
(
f(X1)
g(X1)

ψj,k(X1)
)

=
∫ 1

0

f(x)
g(x)

ψj,k(x)g(x)dx

=
∫ 1

0
f(x)ψj,k(x)dx = dj,k.

Hence, since W1,j,k, . . . ,Wn,j,k are identically distributed,

dj,k = E (W1,j,k) = E
(
W1,j,k1I{|W1,j,k|≤γn}

)
+ E

(
W1,j,k1I{|W1,j,k|>γn}

)
= E

(
1
n

n∑
i=1

Wi,j,k1I{|Wi,j,k|≤γn}

)
+ E

(
W1,j,k1I{|W1,j,k|>γn}

)
. (9)

This with the elementary inequality (x+ y)2 ≤ 2(x2 + y2), (x, y) ∈ R2, imply that

E
(
(d̂j,k − dj,k)2

)
≤ 2(A+B), (10)

where

A = E

( 1
n

n∑
i=1

(
Wi,j,k1I{|Wi,j,k|≤γn} − E(Wi,j,k1I{|Wi,j,k|≤γn})

))2


and
B =

(
E
(
|W1,j,k|1I{|W1,j,k|>γn}

))2
.

Let us bound B and A (by order of difficulty).

Upper bound for B. Since 1I{|W1,j,k|>γn} ≤ |W1,j,k|/γn, we have

E
(
|W1,j,k|1I{|W1,j,k|>γn}

)
≤

E(W 2
1,j,k)
γn

.
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Let us now bound E(W 2
1,j,k). Since X1 and ξ1 are independent and E(ξ1) = 0, we

have

E(W 2
1,j,k) = E

(
Y 2

1

g2(X1)
ψ2
j,k(X1)

)
= E

(
(f(X1) + ξ1)2

g2(X1)
ψ2
j,k(X1)

)
= E

(
f2(X1)
g2(X1)

ψ2
j,k(X1)

)
+ 2E(ξ1)E

(
f(X1)
g2(X1)

ψ2
j,k(X1)

)
+ E

(
ξ21
)

E
(

1
g2(X1)

ψ2
j,k(X1)

)
= E

(
f2(X1)
g2(X1)

ψ2
j,k(X1)

)
+ E(ξ21)E

(
1

g2(X1)
ψ2
j,k(X1)

)
.

Using (3), (4) and
∫ 1
0 ψ

2
j,k(x)dx = 1, we obtain

E
(
f2(X1)
g2(X1)

ψ2
j,k(X1)

)
≤ C2

∗E
(

1
g2(X1)

ψ2
j,k(X1)

)
= C2

∗

∫ 1

0

1
g2(x)

ψ2
j,k(x)g(x)dx = C2

∗

∫ 1

0

1
g(x)

ψ2
j,k(x)dx

≤ C2
∗
c∗

∫ 1

0
ψ2
j,k(x)dx =

C2
∗
c∗
.

And, in a similar way,

E
(

1
g2(X1)

ψ2
j,k(X1)

)
=

∫ 1

0

1
g2(x)

ψ2
j,k(x)g(x)dx =

∫ 1

0

1
g(x)

ψ2
j,k(x)dx

≤ 1
c∗

∫ 1

0
ψ2
j,k(x)dx =

1
c∗
.

So

E(W 2
1,j,k) ≤

1
c∗

(C2
∗ + E(ξ21)) = µ2 = C. (11)

Therefore

B =
(
E
(
|W1,j,k|1I{|W1,j,k|>γn}

))2
≤

(
E(W 2

1,j,k)
γn

)2

≤ C
1
γ2
n

≤ C
lnnθ
nθ

. (12)
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Upper bound for A. We have

A = V

(
1
n

n∑
i=1

Wi,j,k1I{|Wi,j,k|≤γn}

)

=
1
n2

n∑
v=1

n∑
`=1

Cov
(
Wv,j,k1I{|Wv,j,k|≤γn},W`,j,k1I{|W`,j,k|≤γn}

)
≤ 1

n
V
(
W1,j,k1I{|W1,j,k|≤γn}

)
+

2
n2

∣∣∣∣∣
n∑
v=2

v−1∑
`=1

Cov
(
Wv,j,k1I{|Wv,j,k|≤γn},W`,j,k1I{|W`,j,k|≤γn}

)∣∣∣∣∣ . (13)

Using (11), we obtain

V
(
W1,j,k1I{|W1,j,k|≤γn}

)
≤ E

(
W 2

1,j,k1I{|W1,j,k|≤γn}

)
≤ E(W 2

1,j,k) ≤ µ2 = C. (14)

Let us now bound the covariance term. It follows from the strict stationarity of
(Xi, Yi)i∈Z that∣∣∣∣∣

n∑
v=2

v−1∑
`=1

Cov
(
Wv,j,k1I{|Wv,j,k|≤γn},W`,j,k1I{|W`,j,k|≤γn}

)∣∣∣∣∣
=

∣∣∣∣∣
n∑

m=1

(n−m)Cov
(
W0,j,k1I{|W0,j,k|≤γn},Wm,j,k1I{|Wm,j,k|≤γn}

)∣∣∣∣∣
≤ n

n∑
m=1

∣∣∣Cov (W0,j,k1I{|W0,j,k|≤γn},Wm,j,k1I{|Wm,j,k|≤γn}

)∣∣∣ .
By the Davydov inequality for strongly mixing processes (see [12]), the inequality
|W0,j,k|1I{|W0,j,k|≤γn} ≤ max(γn, |W0,j,k|) and (11), for any q ∈ (0, 1), we have∣∣∣Cov (W0,j,k1I{|W0,j,k|≤γn},Wm,j,k1I{|Wm,j,k|≤γn}

)∣∣∣
≤ 10αqm

(
E
(
|W0,j,k|2/(1−q)1I{|W0,j,k|≤γn}

))1−q

= 10αqm
(
E
(
|W0,j,k|2q/(1−q)1I{|W0,j,k|≤γn}W

2
0,j,k

))1−q

≤ Cαqm

(
γ2q/(1−q)
n

)1−q (
E
(
W 2

0,j,k

))1−q ≤ Cαqm

(
nθ

lnnθ

)q
.

Thanks to (2), we have
∑n

m=1 α
q
m ≤ γq

∑∞
m=1 exp

(
−cqmθ

)
= C. So∣∣∣∣∣

n∑
v=2

v−1∑
`=1

Cov
(
Wv,j,k1I{|Wv,j,k|≤γn},W`,j,k1I{|W`,j,k|≤γn}

)∣∣∣∣∣ ≤ Cn

(
nθ

lnnθ

)q
. (15)
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Taking q = 1/θ, we have nqθ/n = 1/nθ. The inequalities (13), (14) and (15) imply

A ≤ C

(
1
n

+
1
n2
n

(
nθ

lnnθ

)q)
≤ C

nqθ
n

= C
1
nθ
≤ C

lnnθ
nθ

. (16)

It follows from (10), (12) and (16) that

E
(
(d̂j,k − dj,k)2

)
≤ C

lnnθ
nθ

. (17)

Replacing φ instead of ψ in the previous proof, one can show that (17) holds with
cj,k =

∫ 1
0 f(x)φj,k(x)dx instead of dj,k and ĉj,k defined by (6) instead of d̂j,k.

The proof of Proposition 1 is complete.

6.2. Proof of Proposition 2

We have

|d̂j,k − dj,k| ≤ |d̂j,k|+ |dj,k|.

We have

|d̂j,k| ≤
1
n

n∑
i=1

∣∣∣∣ Yi
g(Xi)

ψj,k(Xi)
∣∣∣∣ 1I{∣∣∣ Yi

g(Xi)
ψj,k(Xi)

∣∣∣≤γn

} ≤ γn = µ

√
nθ

lnnθ
.

It follows from (3), the Cauchy-Schwarz inequality and
∫ 1
0 ψ

2
j,k(x)dx = 1 that

|dj,k| ≤
∫ 1

0
|f(x)||ψj,k(x)|dx ≤ C∗

∫ 1

0
|ψj,k(x)|dx

≤ C∗

(∫ 1

0
ψ2
j,k(x)dx

)1/2

= C∗ ≤ C

√
nθ

lnnθ
.

Therefore

|d̂j,k − dj,k| ≤ C

√
nθ

lnnθ
. (18)

By (18) and Proposition 1, we have

E
(
(d̂j,k − dj,k)4

)
≤ C

nθ
lnnθ

E
(
(d̂j,k − dj,k)2

)
≤ C

nθ
lnnθ

lnnθ
nθ

= C.

Proposition 2 is proved
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6.3. Proof of Proposition 3

For any i ∈ {1, . . . , n}, set

Wi,j,k =
Yi

g(Xi)
ψj,k(Xi).

By (9), we have

|d̂j,k − dj,k|

=

∣∣∣∣∣ 1n
n∑
i=1

(
Wi,j,k1I{|Wi,j,k|≤γn} − E

(
Wi,j,k1I{|Wi,j,k|≤γn}

))
− E

(
W1,j,k1I{|W1,j,k|>γn}

)∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

(
Wi,j,k1I{|Wi,j,k|≤γn} − E

(
Wi,j,k1I{|Wi,j,k|≤γn}

))∣∣∣∣∣+ E
(
|W1,j,k|1I{|W1,j,k|>γn}

)
.

Using (11), we obtain

E
(
|W1,j,k|1I{|W1,j,k|>γn}

)
≤

E(W 2
1,j,k)
γn

≤ µ2 1
µ

√
lnnθ
nθ

= λn.

Hence

P
(
|d̂j,k − dj,k| ≥ κλn/2

)
≤ P

(∣∣∣∣∣ 1n
n∑
i=1

(
Wi,j,k1I{|Wi,j,k|≤γn} − E

(
Wi,j,k1I{|Wi,j,k|≤γn}

))∣∣∣∣∣ ≥ (κ/2− 1)λn

)
.

(19)

Let us now present a Bernstein inequality for exponentially strongly mixing process.
This is a slightly modified version of [28, Theorem 4.2].

Lemma 1. [28] Let γ > 0, c > 0, θ > 1 and (Si)i∈Z be a stationary process such
that, for any integer m ≥ 1, the associated m-th strongly mixing coefficient satisfies

αm ≤ γ exp(−cmθ).

Let n be a positive integer, h : R → R be a measurable function and, for any i ∈ Z,
Ui = h(Si). We assume that E(U1) = 0 and there exists a constant M > 0 satisfying
|U1| ≤M . Then, for any λ > 0, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui

∣∣∣∣∣ ≥ λ

)
≤ 2(1 + 4e−2γ) exp

(
− uλ2nθ/(θ+1)

2
(
E
(
U2

1

)
+ λM/3

)) ,
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where u = (1/2)(c/8)1/(θ+1).

Set, for any i ∈ {1, . . . , n},

Ui,j,k = Wi,j,k1I{|Wi,j,k|≤γn} − E
(
Wi,j,k1I{|Wi,j,k|≤γn}

)
.

Then U1,j,k, . . . , Un,j,k are identically distributed, depend on the stationary strongly
mixing process (Xi, Yi)i∈Z which satisfies (2), E(U1,j,k) = 0,

|U1,j,k| ≤ |W1,j,k| 1I{|W1,j,k|≤γn} + E
(
|W1,j,k|1I{|W1,j,k|≤γn}

)
≤ 2γn

and, by (11),

E(U2
1,j,k) = V

(
W1,j,k1I{|W1,j,k|≤γn}

)
≤ E(W 2

1,j,k) ≤ µ2.

It follows from Lemma 1 that

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui,j,k

∣∣∣∣∣ ≥ (κ/2− 1)λn

)

≤ 2(1 + 4e−2γ) exp
(
− u(κ/2− 1)2λ2

nnθ
2 (µ2 + 2(κ/2− 1)λnγn/3)

)
. (20)

We have

λnγn = µ

√
lnnθ
nθ

µ

√
nθ

lnnθ
= µ2, λ2

n = µ2 lnnθ
nθ

.

Combining (19) and (20), for any κ ≥ 2 + 16/(3u) + 4
√

(1/u)(16/9u2 + 2), we have

P
(
|d̂j,k − dj,k| ≥ κλn/2

)
≤ 2(1 + 4e−2γ) exp

(
− u(κ/2− 1)2 lnnθ

2 (1 + 2(κ/2− 1)/3)

)
= 2(1 + 4e−2γ)n

− u(κ/2−1)2

2(1+2(κ/2−1)/3)

θ ≤ 2(1 + 4e−2γ)
1
n4
θ

.

This ends the proof of Proposition 3.

6.4. Proof of Theorem 1

We expand the function f on W as

f(x) =
2τ−1∑
k=0

cτ,kφτ,k(x) +
∞∑
j=τ

2j−1∑
k=0

dj,kψj,k(x),
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where cτ,k =
∫ 1
0 f(x)φτ,k(x)dx and dj,k =

∫ 1
0 f(x)ψj,k(x)dx.

Since W is an orthonormal basis of L2([0, 1]), we can write

R(f̂ , f) = E
(∫ 1

0
(f̂(x)− f(x))2dx

)
= U + V +W, (21)

where

U =
2τ−1∑
k=0

E
(
(ĉτ,k − cτ,k)2

)
, V =

j1∑
j=τ

2j−1∑
k=0

E
(
(d̂j,k1I{|d̂j,k|≥κλn} − dj,k)2

)
and

W =
∞∑

j=j1+1

2j−1∑
k=0

d2
j,k.

Let us now bound U , W and V .

Upper bound for U . Using Proposition 1 and 2s/(2s+ 1) < 1, we obtain

U ≤ C2τ
lnnθ
nθ

≤ C

(
lnnθ
nθ

)2s/(2s+1)

. (22)

Upper bound for W . For r ≥ 1 and p ≥ 2, we have Bs
p,r(H) ⊆ Bs

2,∞(H). Since
2s/(2s+ 1) < 2s, we have

W ≤ C
∞∑

j=j1+1

2−2js ≤ C2−2j1s ≤ Cn−2s
θ ≤ C

(
lnnθ
nθ

)2s

≤ C

(
lnnθ
nθ

)2s/(2s+1)

.

For r ≥ 1 and p ∈ [1, 2), we have Bs
p,r(H) ⊆ B

s+1/2−1/p
2,∞ (H). Since s ∈ (1/p,N), we

have s+ 1/2− 1/p > s/(2s+ 1). So

W ≤ C

∞∑
j=j1+1

2−2j(s+1/2−1/p) ≤ C2−2j1(s+1/2−1/p)

≤ Cn
−2(s+1/2−1/p)
θ ≤ C

(
lnnθ
nθ

)2(s+1/2−1/p)

≤ C

(
lnnθ
nθ

)2s/(2s+1)

.

Hence, for r ≥ 1, either p ≥ 2 and s ∈ (0, N) or p ∈ [1, 2) and s ∈ (1/p,N), we have

W ≤ C

(
lnnθ
nθ

)2s/(2s+1)

. (23)
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Upper bound for V . We have

V = V1 + V2 + V3 + V4, (24)

where

V1 =
j1∑
j=τ

2j−1∑
k=0

E
(
(d̂j,k − dj,k)21I{|d̂j,k|≥κλn}1I{|dj,k|<κλn/2}

)
,

V2 =
j1∑
j=τ

2j−1∑
k=0

E
(
(d̂j,k − dj,k)21I{|d̂j,k|≥κλn}1I{|dj,k|≥κλn/2}

)
,

V3 =
j1∑
j=τ

2j−1∑
k=0

E
(
d2
j,k1I{|d̂j,k|<κλn}1I{|dj,k|≥2κλn}

)
and

V4 =
j1∑
j=τ

2j−1∑
k=0

E
(
d2
j,k1I{|d̂j,k|<κλn}1I{|dj,k|<2κλn}

)
.

Let us now investigate the bounds of V1, V2, V3 and V4.
Upper bounds for V1 + V3. Remark that:{
|d̂j,k| < κλn, |dj,k| ≥ 2κλn

}
⊆
{
|d̂j,k − dj,k| > κλn/2

}
,
{
|d̂j,k| ≥ κλn, |dj,k| < κλn/2

}
⊆{

|d̂j,k − dj,k| > κλn/2
}

and
{
|d̂j,k| < κλn, |dj,k| ≥ 2κλn

}
⊆
{
|dj,k| ≤ 2|d̂j,k − dj,k|

}
.

So

V1 + V3 ≤ C

j1∑
j=τ

2j−1∑
k=0

E
(
(d̂j,k − dj,k)21I{|d̂j,k−dj,k|>κλn/2}

)
.

It follows from the Cauchy-Schwarz inequality, Propositions 2 and 3 that

E
(
(d̂j,k − dj,k)21I{|d̂j,k−dj,k|>κλn/2}

)
≤

(
E
(
(d̂j,k − dj,k)4

))1/2 (
P
(
|d̂j,k − dj,k| > κλn/2

))1/2

≤ C

(
1
n4
θ

)1/2

= C
1
n2
θ

.

Since 2s/(2s+ 1) < 1, we have

V1 + V3 ≤ C
1
n2
θ

j1∑
j=τ

2j ≤ C
1
n2
θ

2j1 ≤ C
1
nθ
≤ C

(
lnnθ
nθ

)2s/(2s+1)

. (25)
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Upper bound for V2. Using again Proposition 1, we obtain

E
(
(d̂j,k − dj,k)2

)
≤ C

lnnθ
nθ

.

Hence

V2 ≤ C
lnnθ
nθ

j1∑
j=τ

2j−1∑
k=0

1I{|dj,k|>κλn/2}.

Let j2 be the integer defined by

1
2

(
nθ

lnnθ

)1/(2s+1)

< 2j2 ≤
(

nθ
lnnθ

)1/(2s+1)

. (26)

We have

V2 ≤ V2,1 + V2,2,

where

V2,1 = C
lnnθ
nθ

j2∑
j=τ

2j−1∑
k=0

1I{|dj,k|>κλn/2}

and

V2,2 = C
lnnθ
nθ

j1∑
j=j2+1

2j−1∑
k=0

1I{|dj,k|>κλn/2}.

We have

V2,1 ≤ C
lnnθ
nθ

j2∑
j=τ

2j ≤ C
lnnθ
nθ

2j2 ≤ C

(
lnnθ
nθ

)2s/(2s+1)

.

For r ≥ 1 and p ≥ 2, since Bs
p,r(H) ⊆ Bs

2,∞(H), we have

V2,2 ≤ C
lnnθ
nθλ2

n

j1∑
j=j2+1

2j−1∑
k=0

d2
j,k ≤ C

∞∑
j=j2+1

2j−1∑
k=0

d2
j,k ≤ C2−2j2s

≤ C

(
lnnθ
nθ

)2s/(2s+1)

.
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For r ≥ 1, p ∈ [1, 2) and s ∈ (1/p,N), using 1I{|dj,k|>κλn/2} ≤ C|dj,k|p/λpn, Bs
p,r(H) ⊆

B
s+1/2−1/p
2,∞ (H) and (2s+ 1)(2− p)/2 + (s+ 1/2− 1/p)p = 2s, we have

V2,2 ≤ C
lnnθ
nθλ

p
n

j1∑
j=j2+1

2j−1∑
k=0

|dj,k|p ≤ C

(
lnnθ
nθ

)(2−p)/2 ∞∑
j=j2+1

2−j(s+1/2−1/p)p

≤ C

(
lnnθ
nθ

)(2−p)/2
2−j2(s+1/2−1/p)p ≤ C

(
lnnθ
nθ

)2s/(2s+1)

.

So, for r ≥ 1, either p ≥ 2 and s ∈ (0, N) or p ∈ [1, 2) and s ∈ (1/p,N), we have

V2 ≤ C

(
lnnθ
nθ

)2s/(2s+1)

. (27)

Upper bound for V4. We have

V4 ≤
j1∑
j=τ

2j−1∑
k=0

d2
j,k1I{|dj,k|<2κλn}.

Let j2 be the integer (26). Then

V4 ≤ V4,1 + V4,2,

where

V4,1 =
j2∑
j=τ

2j−1∑
k=0

d2
j,k1I{|dj,k|<2κλn}, V4,2 =

j1∑
j=j2+1

2j−1∑
k=0

d2
j,k1I{|dj,k|<2κλn}.

We have

V4,1 ≤ C

j2∑
j=τ

2jλ2
n = C

lnnθ
nθ

j2∑
j=τ

2j ≤ C
lnnθ
nθ

2j2 ≤ C

(
lnnθ
nθ

)2s/(2s+1)

.

For r ≥ 1 and p ≥ 2, since Bs
p,r(H) ⊆ Bs

2,∞(H), we have

V4,2 ≤
∞∑

j=j2+1

2j−1∑
k=0

d2
j,k ≤ C2−2j2s ≤ C

(
lnnθ
nθ

)2s/(2s+1)

.
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For r ≥ 1, p ∈ [1, 2) and s ∈ (1/p,N), using d2
j,k1I{|dj,k|<2κλn} ≤ Cλ2−p

n |dj,k|p,

Bs
p,r(H) ⊆ B

s+1/2−1/p
2,∞ (H) and (2s+ 1)(2− p)/2 + (s+ 1/2− 1/p)p = 2s, we have

V4,2 ≤ Cλ2−p
n

j1∑
j=j2+1

2j−1∑
k=0

|dj,k|p = C

(
lnnθ
nθ

)(2−p)/2 j1∑
j=j2+1

2j−1∑
k=0

|dj,k|p

≤ C

(
lnnθ
nθ

)(2−p)/2 ∞∑
j=j2+1

2−j(s+1/2−1/p)p ≤ C

(
lnnθ
nθ

)(2−p)/2
2−j2(s+1/2−1/p)p

≤ C

(
lnnθ
nθ

)2s/(2s+1)

.

So, for r ≥ 1, either p ≥ 2 and s ∈ (0, N) or p ∈ [1, 2) and s ∈ (1/p,N), we have

V4 ≤ C

(
lnnθ
nθ

)2s/(2s+1)

. (28)

It follows from (24), (25), (27) and (28) that

V ≤ C

(
lnnθ
nθ

)2s/(2s+1)

. (29)

Combining (21), (22), (23) and (29), we have, for r ≥ 1, either p ≥ 2 and
s ∈ (0, N) or p ∈ [1, 2) and s ∈ (1/p,N),

R(f̂ , f) ≤ C

(
lnnθ
nθ

)2s/(2s+1)

.

The proof of Theorem 1 is complete.
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