THE ORDER OF CONVEXITY OF SOME INTEGRAL OPERATORS

VASILE MARIUS MACARIE AND DANIEL BREAZ

ABSTRACT. In this paper we consider the classes of starlike functions of order α , convex functions of order α and we study the convexity and α -order convexity for some general integral operators. Several corollaries of the main results are also considered.

2000 Mathematics Subject Classification: 30C45.

Key words: analytic function, integral operator, open unit disk, convexity.

1. Introduction

We consider the unit open disk of the complex plane denoted by $U, U = \{z : |z| < 1\}$ and let \mathcal{A} be the class of holomorphic functions in U of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
(1)

which are analytic in U. We denote by S the class of univalent functions in the unit disk.

A function $f(z) \in S$ is a starlike of order α if it satisfies

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \quad (z \in U)$$
 (2)

for some α ($0 \le \alpha < 1$). We denote by $S^*(\alpha)$ the subclass of \mathcal{A} consisting of the functions which are starlike of order α in U. For $\alpha = 0$ we obtain the class of starlike functions, denoted by S^* .

A function $f(z) \in S$ is convex of order α if it satisfies

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \quad (z \in U)$$
 (3)

for some α ($0 \le \alpha < 1$). We denote by $K(\alpha)$ the subclass of \mathcal{A} consisting of the functions which are convex of order α in U. For $\alpha = 0$ we obtain the class of convex functions, denoted by K.

A function $f \in \mathcal{A}$ is in the class $R(\alpha)$ if $Re(f'(z)) > \alpha$, $(z \in U)$.

Recently, Frasin and Jahangiri in [3] define the family $B(\mu, \alpha)$, $\mu \ge 0$, $0 \le \alpha < 1$ so that it consists of functions $f \in \mathcal{A}$ satisfying the condition

$$\left| f'(z) \left(\frac{z}{f(z)} \right)^{\mu} - 1 \right| < 1 - \alpha, \quad (z \in U). \tag{4}$$

In this paper we will obtain the order of convexity of the following integral operators:

$$G_{\gamma}(z) = \int_0^z \left(t e^{f(t)} \right)^{\frac{1}{\gamma}} dt, \tag{5}$$

$$G_{n,\gamma}(z) = \int_0^z \prod_{i=1}^n \left(t e^{f_i(t)} \right)^{\gamma} dt, \tag{6}$$

$$H_{n,\gamma}(z) = \int_0^z \prod_{i=1}^n \left(t e^{f_i(t)} \right)^{\frac{1}{\gamma}} dt, \tag{7}$$

and

$$H_n(z) = \int_0^z \prod_{i=1}^n \left(t e^{f_i(t)} \right)^{\gamma_i} dt, \tag{8}$$

where the functions f_i for all i = 1, 2, ..., n and f are in $B(\mu, \alpha)$.

Lemma 1. (General Schwarz Lemma).[5] Let the function f be regular in the disk $U_R = \{z \in \mathbb{C} : |z| < R\}$, with |f(z)| < M for fixed M. If f has one zero with multiplicity order bigger than m for z = 0, then

$$|f(z)| \le \frac{M}{R^m} \cdot |z|^m \quad (z \in U_R).$$

The equality can hold only if

$$f(z) = e^{i\theta} \cdot \frac{M}{R^m} \cdot z^m,$$

where θ is constant.

Theorem 1. [4]. Let $f \in A$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$. If $|f(z)| \leq M$ $(M \geq 1, z \in U)$ then the integral operator

$$G(z) = \int_0^z \left(t e^{f(t)} \right)^{\gamma} dt \tag{9}$$

is in $K(\delta)$, where

$$\delta = 1 - |\gamma| \left[(2 - \alpha) M^{\mu} + 1 \right] \tag{10}$$

and $|\gamma| < \frac{1}{(2-\alpha)M^{\mu}+1}, \ \gamma \in \mathbb{C}.$

2. Main results

Theorem 2. Let $f \in \mathcal{A}$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$. If $|f(z)| \leq M$ $(M \geq 1, z \in U)$ then the integral operator

$$G_{\gamma}(z) = \int_{0}^{z} \left(t e^{f(t)} \right)^{\frac{1}{\gamma}} dt \tag{11}$$

is in $K(\delta)$, where

$$\delta = 1 - \frac{1}{|\gamma|} \left[(2 - \alpha) M^{\mu} + 1 \right] \tag{12}$$

and
$$\frac{1}{|\gamma|} < \frac{1}{(2-\alpha)M^{\mu}+1}, \ \gamma \in \mathbb{C} \setminus \{0\}.$$

Proof. Let $f \in \mathcal{A}$ be in the class $B(\mu, \alpha), \ \mu \geq 0, \ 0 \leq \alpha < 1$. It follows from (11) that

$$G'_{\gamma}(z) = \left(ze^{f(z)}\right)^{\frac{1}{\gamma}}$$

and

$$G_{\gamma}''(z) = \frac{1}{\gamma} \left(z e^{f(z)} \right)^{\frac{1}{\gamma} - 1} \left(e^{f(z)} + z e^{f(z)} f'(z) \right).$$

Then $\frac{G_{\gamma}''(z)}{G_{\gamma}'(z)} = \frac{1}{\gamma} \left(\frac{1}{z} + f'(z) \right)$ and, hence

$$\left| \frac{zG_{\gamma}''(z)}{G_{\gamma}'(z)} \right| = \frac{1}{|\gamma|} \left(\left| 1 + zf'(z) \right| \right) \le \frac{1}{|\gamma|} \left(1 + \left| f'(z) \left(\frac{z}{f(z)} \right)^{\mu} \right| \cdot \left| \left(\frac{f(z)}{z} \right)^{\mu} \right| \cdot |z| \right). \tag{13}$$

Applying the General Schwarz lemma, we have $\left|\frac{f(z)}{z}\right| \leq M$, $(z \in U)$. Therefore, from (13), we obtain

$$\left| \frac{zG_{\gamma}''(z)}{G_{\gamma}'(z)} \right| \le \frac{1}{|\gamma|} \left(1 + \left| f'(z) \left(\frac{z}{f(z)} \right)^{\mu} \right| \cdot M^{\mu} \right), \ z \in U.$$
 (14)

From (4) and (14), we see that

$$\left|\frac{zG_{\gamma}''(z)}{G_{\gamma}'(z)}\right| \le \frac{1}{|\gamma|}\left[(2-\alpha)M^{\mu} + 1\right] = 1 - \delta.$$

Letting $\mu=0$ in Theorem 2, we have $B(0,\alpha)\equiv R(\alpha)$ and we obtain next corollary.

Corollary 1. Let $f \in A$ be in the class $R(\alpha)$, $0 \le \alpha < 1$. Then the integral operator

$$\int_0^z \left(te^{f(t)}\right)^{\frac{1}{\gamma}} \mathrm{d}t \in K(\delta),$$

where

$$\delta = 1 - \frac{1}{|\gamma|} (3 - \alpha) \tag{15}$$

and
$$\frac{1}{|\gamma|} < \frac{1}{3-\alpha}, \ \gamma \in \mathbb{C} \setminus \{0\}.$$

Letting $\mu = 1$ in Theorem 2, we have $B(1, \alpha) \equiv S^*(\alpha)$ and we obtain next corollary.

Corollary 2. Let $f \in A$ be in the class $S^*(\alpha)$, $0 \le \alpha < 1$. If $|f(z)| \le M$ $(M \ge 1, z \in U)$ then the integral operator

$$\int_0^z \left(te^{f(t)}\right)^{\frac{1}{\gamma}} \mathrm{d}t \in K(\delta),$$

where

$$\delta = 1 - \frac{1}{|\gamma|} [(2 - \alpha)M + 1] \tag{16}$$

and
$$\frac{1}{|\gamma|} < \frac{1}{(2-\alpha)M+1}, \ \gamma \in \mathbb{C} \setminus \{0\}.$$

Letting $\alpha = \delta = 0$ in Corollary 2, we have

Corollary 3. Let $f \in \mathcal{A}$ be a starlike function in U. If $|f(z)| \leq M$ $(M \geq 1, z \in U)$ then the integral operator $\int_0^z \left(te^{f(t)}\right)^{\frac{1}{\gamma}} dt$ is convex in U, where $\frac{1}{|\gamma|} = \frac{1}{2M+1}$, $\gamma \in \mathbb{C} \setminus \{0\}$.

Theorem 3. Let $f_i(z) \in \mathcal{A}$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$ for all i = 1, 2, ..., n. If $|f_i(z)| \leq M_i$ $(M_i \geq 1, z \in U)$ for all i = 1, 2, ..., n, then the integral operator

$$G_{n,\gamma}(z) = \int_0^z \prod_{i=1}^n \left(te^{f_i(t)}\right)^{\gamma} dt$$

is in $K(\delta)$, where

$$\delta = 1 - |\gamma| \left[n + (2 - \alpha) \sum_{i=1}^{n} M_i^{\mu} \right]$$
 (17)

and
$$|\gamma| < \frac{1}{n + (2 - \alpha) \sum_{i=1}^{n} M_i^{\mu}}, \ \gamma \in \mathbb{C}.$$

Proof. Let $f_i \in \mathcal{A}$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$. It follows from (6) that

$$G_{n,\gamma}(z) = \int_0^z t^{n\gamma} e^{\gamma \sum_{i=1}^n f_i(t)} dt$$
 and $G'_{n,\gamma}(z) = z^{n\gamma} e^{\gamma \sum_{i=1}^n f_i(z)}$.

Also

$$G_{n,\gamma}''(z) = \gamma \left(z^n e^{\sum_{i=1}^n f_i(z)} \right)^{\gamma - 1} \cdot z^{n-1} \cdot e^{\sum_{i=1}^n f_i(z)} \left(n + z \sum_{i=1}^n f_i'(z) \right)$$

Then

$$\frac{G_{n,\gamma}''(z)}{G_{n,\gamma}'(z)} = \gamma \left(\frac{n}{z} + \sum_{i=1}^{n} f_i'(z)\right)$$

and, hence

$$\left| \frac{zG_{n,\gamma}''(z)}{G_{n,\gamma}'(z)} \right| = |\gamma| \left| n + z \sum_{i=1}^{n} f_i'(z) \right| \le |\gamma| \sum_{i=1}^{n} \left| 1 + z f_i'(z) \right|$$

$$\le |\gamma| \sum_{i=1}^{n} \left[1 + \left| f_i'(z) \left(\frac{z}{f_i(z)} \right)^{\mu} \right| \cdot \left| \left(\frac{f_i(z)}{z} \right)^{\mu} \right| \cdot |z| \right]$$
(18)

Applying the General Schwarz lemma, we have $\left|\frac{f_i(z)}{z}\right| \leq M_i$, for all i = 1, 2, ..., n. Therefore, from (18), we obtain

$$\left| \frac{zG_{n,\gamma}''(z)}{G_{n,\gamma}'(z)} \right| \le |\gamma| \sum_{i=1}^{n} \left[1 + \left| f_i'(z) \left(\frac{z}{f_i(z)} \right)^{\mu} \right| \cdot M_i^{\mu} \right], \quad (z \in U).$$
 (19)

From (4) and (19), we see that

$$\left|\frac{zG_{n,\gamma}''(z)}{G_{n,\gamma}'(z)}\right| \leq |\gamma| \left[n + (2-\alpha)\sum_{i=1}^n M_i^{\mu}\right] = 1 - \delta.$$

This completes the proof.

For $M_1 = M_2 = ... = M_n = M$ we have

Corollary 4. Let $f_i(z) \in \mathcal{A}$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$ for all i = 1, 2, ..., n. If $|f_i(z)| \leq M$ $(M \geq 1, z \in U)$ for all i = 1, 2, ..., n, then the integral operator

$$G_{n,\gamma}(z) = \int_0^z \prod_{i=1}^n \left(te^{f_i(t)}\right)^{\gamma} dt$$

is in $K(\delta)$, where

$$\delta = 1 - |\gamma| \left[n(1 + (2 - \alpha)M^{\mu}) \right] \tag{20}$$

$$\label{eq:and_equation} and \ |\gamma| < \frac{1}{n[1+(2-\alpha)M^{\mu}]}, \ \gamma \in \mathbb{C}.$$

Letting $\mu = 0$ in Corollary 4, we have

Corollary 5. Let $f_i(z) \in A$ be in the class $R(\alpha)$, $0 \le \alpha < 1$ for all i = 1, 2, ..., n. Then the integral operator defined in (6) is in $K(\delta)$, where

$$\delta = 1 - |\gamma| n(3 - \alpha) \tag{21}$$

and
$$|\gamma| < \frac{1}{n(3-\alpha)}, \ \gamma \in \mathbb{C}.$$

Letting $\mu = 1$ in Corollary 4, we have

Corollary 6. Let $f_i \in A$ be in the class $S^*(\alpha)$, $0 \le \alpha < 1$ for all i = 1, 2, ..., n. If $|f_i(z)| \le M$ $(M \ge 1, z \in U)$ for all i = 1, 2, ..., n, then the integral operator defined in (6) is in $K(\delta)$, where

$$\delta = 1 - |\gamma| [n(1 + (2 - \alpha)M] \tag{22}$$

and
$$|\gamma| < \frac{1}{n[1 + (2 - \alpha)M]}, \ \gamma \in \mathbb{C}.$$

Letting $\alpha = \delta = 0$ in Corollary 6, we have

Corollary 7. Let $f_i \in \mathcal{A}$ be starlike functions in U for all i = 1, 2, ..., n. If $|f_i(z)| \leq M$ $(M \geq 1, z \in U)$ for all i = 1, 2, ..., n then the integral operator defined in (6) is convex in U, where $|\gamma| = \frac{1}{n(2M+1)}$, $\gamma \in \mathbb{C}$.

Letting n = 1 in Corollary 4, we obtain Theorem 1 from paper [4].

Theorem 4. Let $f_i(z) \in \mathcal{A}$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$ for all i = 1, 2, ..., n. If $|f_i(z)| \leq M_i$ $(M_i \geq 1, z \in U)$ for all i = 1, 2, ..., n, then the integral operator

$$H_{n,\gamma}(z) = \int_0^z \prod_{i=1}^n \left(t e^{f_i(t)} \right)^{\frac{1}{\gamma}} dt$$

is in $K(\delta)$, where

$$\delta = 1 - \frac{1}{|\gamma|} \left[n + (2 - \alpha) \sum_{i=1}^{n} M_i^{\mu} \right]$$
 (23)

and
$$\frac{1}{|\gamma|} < \frac{1}{n + (2 - \alpha) \sum_{i=1}^{n} M_i^{\mu}}, \ \gamma \in \mathbb{C} \setminus \{0\}.$$

Proof. Let $f_i \in \mathcal{A}$ be in the class $B(\mu, \alpha), \ \mu \geq 0, \ 0 \leq \alpha < 1$. We have from (7) that

$$H_{n,\gamma}(z) = \int_0^z t^{\frac{n}{\gamma}} e^{\frac{1}{\gamma} \sum_{i=1}^n f_i(t)} \mathrm{d}t \quad \text{and} \quad H'_{n,\gamma}(z) = z^{\frac{n}{\gamma}} e^{\frac{1}{\gamma} \sum_{i=1}^n f_i(z)}.$$

Also

$$H_{n,\gamma}''(z) = \frac{1}{\gamma} \left(z^n e^{\sum_{i=1}^n f_i(z)} \right)^{\frac{1}{\gamma} - 1} \cdot z^{n-1} \cdot e^{\sum_{i=1}^n f_i(z)} \left(n + z \sum_{i=1}^n f_i'(z) \right)$$

Then

$$\frac{H_{n,\gamma}''(z)}{H_{n,\gamma}'(z)} = \frac{1}{\gamma} \left(\frac{n}{z} + \sum_{i=1}^{n} f_i'(z) \right)$$

and, hence

$$\left| \frac{zH_{n,\gamma}''(z)}{H_{n,\gamma}'(z)} \right| = \frac{1}{|\gamma|} \left| n + z \sum_{i=1}^{n} f_i'(z) \right| \le \frac{1}{|\gamma|} \left(\sum_{i=1}^{n} \left| 1 + z f_i'(z) \right| \right) \\
\le \frac{1}{|\gamma|} \sum_{i=1}^{n} \left[1 + \left| f_i'(z) \left(\frac{z}{f_i(z)} \right)^{\mu} \right| \cdot \left| \left(\frac{f_i(z)}{z} \right)^{\mu} \right| \cdot |z| \right]$$
(24)

Applying the General Schwarz lemma, we have $\left|\frac{f_i(z)}{z}\right| \leq M_i$, for all i = 1, 2, ..., n. Therefore, from (24), we obtain

$$\left| \frac{z H_{n,\gamma}''(z)}{H_{n,\gamma}'(z)} \right| \le \frac{1}{|\gamma|} \sum_{i=1}^{n} \left[1 + \left| f_i'(z) \left(\frac{z}{f_i(z)} \right)^{\mu} \right| \cdot M_i^{\mu} \right], \quad (z \in U). \tag{25}$$

From (4) and (25), we see that

$$\left|\frac{zH_{n,\gamma}''(z)}{H_{n,\gamma}'(z)}\right| \leq \frac{1}{|\gamma|} \left[n + (2-\alpha)\sum_{i=1}^n M_i^{\mu}\right] = 1 - \delta.$$

For $M_1 = M_2 = ... = M_n = M$ we have

Corollary 8. Let $f_i(z) \in \mathcal{A}$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$ for all i = 1, 2, ..., n. If $|f_i(z)| \leq M$ $(M \geq 1, z \in U)$ for all i = 1, 2, ..., n, then the integral operator

$$H_{n,\gamma}(z) = \int_0^z \prod_{i=1}^n \left(t e^{f_i(t)} \right)^{\frac{1}{\gamma}} dt$$

is in $K(\delta)$, where

$$\delta = 1 - \frac{n}{|\gamma|} [(2 - \alpha)M^{\mu} + 1] \tag{26}$$

$$and \ \frac{1}{|\gamma|} < \frac{1}{n[(2-\alpha)M^{\mu}+1]}, \ \gamma \in \mathbb{C} \setminus \{0\}.$$

Letting $\mu = 0$ in Corollary 8, we have

Corollary 9. Let $f_i(z) \in \mathcal{A}$ be in the class $R(\alpha)$, $0 \le \alpha < 1$ for all i = 1, 2, ..., n. Then the integral operator defined in (7) is in $K(\delta)$, where

$$\delta = 1 - \frac{n}{|\gamma|} (3 - \alpha) \tag{27}$$

and
$$\frac{1}{|\gamma|} < \frac{1}{n(3-\alpha)}, \ \gamma \in \mathbb{C} \setminus \{0\}.$$

Letting $\mu = 1$ in Corollary 8, we have

Corollary 10. Let $f_i \in A$ be in the class $S^*(\alpha)$, $0 \le \alpha < 1$ for all i = 1, 2, ..., n. If $|f_i(z)| \le M$ $(M \ge 1, z \in U)$ for all i = 1, 2, ..., n, then the integral operator defined in (7) is in $K(\delta)$, where

$$\delta = 1 - \frac{n}{|\gamma|} [1 + (2 - \alpha)M] \tag{28}$$

and
$$\frac{1}{|\gamma|} < \frac{1}{n[1 + (2 - \alpha)M]}, \ \gamma \in \mathbb{C} \setminus \{0\}.$$

Letting $\alpha = \delta = 0$ in Corollary 10, we have

Corollary 11. Let $f_i(z) \in \mathcal{A}$ be starlike functions in U for all i = 1, 2, ..., n. If $|f_i(z)| \leq M$ $(M \geq 1, z \in U)$ for all i = 1, 2, ..., n then the integral operator defined in (7) is convex in U, where $\frac{1}{|\gamma|} = \frac{1}{n(2M+1)}$, $\gamma \in \mathbb{C} \setminus \{0\}$.

Letting n = 1 in Corollary 8, we obtain Theorem 2.

Theorem 5. Let $f_i(z) \in \mathcal{A}$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$ for all i = 1, 2, ..., n. If $|f_i(z)| \leq M_i$ $(M_i \geq 1, z \in U)$ for all i = 1, 2, ..., n, then the integral operator

$$H_n(z) = \int_0^z \prod_{i=1}^n \left(t e^{f_i(t)} \right)^{\gamma_i} dt$$

is in $K(\delta)$, where

$$\delta = 1 - \sum_{i=1}^{n} |\gamma_i| \cdot [1 + (2 - \alpha)M_i^{\mu}]$$
 (29)

and
$$\sum_{i=1}^{n} |\gamma_i| \cdot [1 + (2 - \alpha)M_i^{\mu}] < 1, \ \gamma_i \in \mathbb{C}$$
 for all $i = 1, 2, ...n$.

Proof. Let $f_i \in \mathcal{A}$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$. It follows from (8) that

$$H_n(z) = \int_0^z \int_{1}^z \int_{1}^z \gamma_i e^{\sum_{i=1}^n \gamma_i f_i(t)} dt$$
 and $H'_n(z) = \int_{1}^z \int_{1}^z \gamma_i e^{\sum_{i=1}^n \gamma_i f_i(z)} dt$.

Also

$$H_n''(z) = z^{\sum_{i=1}^n \gamma_i - 1} \cdot e^{\sum_{i=1}^n \gamma_i f_i(z)} \left[\sum_{i=1}^n \gamma_i + z \sum_{i=1}^n \gamma_i f_i'(z) \right]$$

Then

$$\frac{H_n''(z)}{H_n'(z)} = \frac{\sum_{i=1}^n \gamma_i + z \sum_{i=1}^n \gamma_i f_i'(z)}{z}$$

and, hence

$$\left| \frac{zH_n''(z)}{H_n'(z)} \right| = \left| \sum_{i=1}^n \gamma_i + z \sum_{i=1}^n \gamma_i f_i'(z) \right| \le \sum_{i=1}^n |\gamma_i| + |z| \sum_{i=1}^n |\gamma_i| \cdot |f_i'(z)|$$

$$\le \sum_{i=1}^n |\gamma_i| + |z| \cdot \sum_{i=1}^n |\gamma_i| \cdot \left| f_i'(z) \left(\frac{z}{f_i(z)} \right)^{\mu} \right| \cdot \left| \left(\frac{f_i(z)}{z} \right)^{\mu} \right| \tag{30}$$

Applying the General Schwarz lemma, we have $\left|\frac{f_i(z)}{z}\right| \leq M_i$, for all i = 1, 2, ..., n. Therefore, from (30), we obtain

$$\left| \frac{z H_n''(z)}{H_n'(z)} \right| \le \sum_{i=1}^n |\gamma_i| + \sum_{i=1}^n |\gamma_i| \cdot \left| f_i'(z) \left(\frac{z}{f_i(z)} \right)^{\mu} \right| \cdot M_i^{\mu}, \ (z \in U).$$
 (31)

From (4) and (31), we see that

$$\left| \frac{zH_n''(z)}{H_n'(z)} \right| \le \sum_{i=1}^n |\gamma_i| \cdot [1 + (2 - \alpha)M_i^{\mu}] = 1 - \delta.$$

This completes the proof.

For $M_1 = M_2 = ... = M_n = M$ we have

Corollary 12. Let $f_i(z) \in \mathcal{A}$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$ for all i = 1, 2, ..., n. If $|f_i(z)| \leq M$ $(M \geq 1, z \in U)$ for all i = 1, 2, ..., n, then the integral operator

$$H_n(z) = \int_0^z \prod_{i=1}^n \left(t e^{f_i(t)} \right)^{\gamma_i} dt$$

is in $K(\delta)$, where

$$\delta = 1 - \sum_{i=1}^{n} |\gamma_i| \cdot [(2 - \alpha)M^{\mu} + 1]$$
(32)

and $\sum_{i=1}^{n} |\gamma_i| < \frac{1}{(2-\alpha)M^{\mu}+1}, \ \gamma_i \in \mathbb{C} \text{ for all } i=1,2,...n..$

Letting $\mu = 0$ in Corollary 12, we have

Corollary 13. Let $f_i(z) \in \mathcal{A}$ be in the class $R(\alpha)$, $0 \le \alpha < 1$ for all i = 1, 2, ..., n. Then the integral operator defined in (8) is in $K(\delta)$, where

$$\delta = 1 - \sum_{i=1}^{n} |\gamma_i|(3 - \alpha) \tag{33}$$

and
$$\sum_{i=1}^{n} |\gamma_i| < \frac{1}{3-\alpha}, \ \gamma_i \in \mathbb{C} \text{ for all } i = 1, 2, ..., n.$$

Letting $\mu = 1$ in Corollary 12, we have

Corollary 14. Let $f_i \in A$ be in the class $S^*(\alpha)$, $0 \le \alpha < 1$ for all i = 1, 2, ..., n. If $|f_i(z)| \le M$ $(M \ge 1, z \in U)$ for all i = 1, 2, ..., n, then the integral operator defined in (8) is in $K(\delta)$, where

$$\delta = 1 - \sum_{i=1}^{n} |\gamma_i| [1 + (2 - \alpha)M]$$
(34)

and
$$\sum_{i=1}^{n} |\gamma_i| < \frac{1}{1 + (2 - \alpha)M}, \ \gamma_i \in \mathbb{C} \text{ for all } i = 1, 2, ..., n.$$

Letting $\alpha = \delta = 0$ in Corollary 14, we have

Corollary 15. Let $f_i \in \mathcal{A}$ be starlike functions in U for all i = 1, 2, ..., n. If $|f(z)| \leq M$ $(M \geq 1, z \in U)$ for all i = 1, 2, ..., n then the integral operator defined in (8) is convex in U, where $\sum_{i=1}^{n} |\gamma_i| = \frac{1}{2M+1}$, $\gamma_i \in \mathbb{C}$ for all i = 1, 2, ..., n.

Letting n = 1 in Corollary 12, we obtain Theorem 1.

References

- [1] D. Breaz, N. Breaz, Some convexity properties for a general integral operator, Journal of Inequalities in Pure and Applied Mathematics, Vol. 7, Issue 5, article 177, 2006.
- [2] B.A. Frasin, Some properties of certain analytic and univalent functions, Tamsui Oxford J. Math. Sci., 23(1) (2007), 66-77.
- [3] B.A. Frasin, J. Jahangiri, A new and comprehensive class of analytic functions, Anal. Univ. Oradea, Fasc. Math., XV(2008), 59-62.
- [4] B.A. Frasin, A.-S. Ahmad, *The order of convexity of two integral operators*, Studia Univ. "Babes-Bolyai", Mathematica, Volume LV, No 2, 2010, 113-117.
 - [5] Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975.

Vasile Marius Macarie University of Pitești Department of Mathematics Argeș, România.

 $\hbox{E-mail}: \ macariem@yahoo.com$

Daniel Breaz

"1 Decembrie 1918" University of Alba Iulia

Department of Mathematics

Alba Iulia, Str. N. Iorga, 510000, No. 11-13, România.

E-mail: dbreaz@uab.ro