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RADIUS OF STARLIKE AND PARTIAL SUM PROPERTY FOR
HOLOMORPHIC FUNCTIONS DEFINED BY KOMATU

OPERATOR
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Abstract. In this paper we investigate some important properties of a holo-
morphic functions with negative coefficients by using Komatu operator. We provide
necessary and sufficient conditions, radius of starlikeness, convexity and close-to-
convexity for this class.
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1. Introduction and Definitions

Let B denotes the class of functions analytic in the unit disk ∆ = {z ∈ C : |z| < 1}
and let τ denotes the subclass of B consisting holomorphic functions of the form

f(z) = z −
∞∑

k=2

akz
k, (1)

which are analytic in the unit disc ∆.

Definition 1.1. The operator kδ
c is the komatu operator ([2],[5]) defined by

kδ
c =

∫ 1

0

(c + 1)δ

Γ(δ)
tc
(

log
1
t

)δ−1 f(tz)
t

dt.
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By applying a simple calculation for f ∈ τ we get

kδ
c = z −

∞∑
k=2

(
c + 1
c + k

)δ

akz
k. (2)

From now on in this paper let

ξk(c, δ) =
(

c + 1
c + k

)δ

⇒ kδ
x = z −

∞∑
k=2

ξk(c, δ)akz
k, (3)

Definition 1.2. A function f(z) in τ is said to be in class of τ(α, β, c, δ) if

Re

{
kδ

c(f)
z [kδ

c(f)]′

}
>

∣∣∣∣ kδ
c(f)

z [kδ
c(f)]′

− 1
∣∣∣∣+ β, (4)

where 0 ≤ α < 1, 0 ≤ β < 1, c ≥ −1 and δ > 0.

Definition 1.3. A function f(z) ∈ B is said to be convex of order µ(0 ≤ µ < 1)
if and only if Re

{
1 + zf ′′(z)

f ′(z)

}
> µ, z ∈ ∆ (see [4]).

A function f(z) ∈ B is said to be starlike of order µ(0 ≤ µ < 1) if and only if
Re
{

1 + zf ′(z)
f ′(z)

}
> µ, z ∈ ∆ (see [1], [4]).

The family τ(α, β, c, δ) is a special interest for it contains many well-known as
well as new classes of analytic univalent functions. This family is reviewed by Sh.
Najafzadeh and A. Ebadian in [3], and also A. Tehranchi and S.R. Kulkarni in [5],
[6].

2. A Necessary and Sufficient Conditions for f to belong to τ(α, β, c, δ)

The following theorem gives a necessary and sufficient condition for a function
to be in τ(α, β, c, δ). Before proving the theorem we need the following lemma.

Lemma 2.1. Let 0 ≤ α < 1, 0 ≤ β < 1 and γ ∈ R. Then Re(w) > α|w− 1|+ β
if and only if

Re[w(1 + αeiγ)− αiγ ] > β. (5)
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Lemma 2.2. Let 0 ≤ β < 1 and w ∈ C. Then Re(w) > β if and only if
|w − (1 + β)| < |w + (1− β)|.

There is a mistake in the proof of Theorem 2.2 in [3], which is corrected as in
the following:

Theorem 2.3. Let f ∈ B. Then f(z) ∈ τ(α, β, c, δ) if and only if
∞∑

k=2

[(1 + α)− k(α + β)]
1− β

ξk(c, δ)ak < 1. (6)

Proof. Let us assume that f(z) ∈ τ(α, β, c, δ). So by Lemma 2.1 and letting
w = kδ

c(f)
z[kδ

c(f)]′
in (4) we obtain

Re[w(1 + αeiγ)− αeiγ ] > β.

So

Re


z −

∞∑
k=1

ξk(c, δ)akz
k

z

(
1−

∞∑
k=2

kξk(c, δ)akz
k−1

)(1 + αeiγ)− αeiγ − β

 > 0

then

Re


1− β −

∞∑
k=2

(1− βk)ξk(c, δ)akz
k−1 − αeiγ

∞∑
k=2

(1− k)ξk(c, δ)akz
k−1

1−
∞∑

k=2

kξk(c, δ)akz
k−1

 .

The above inequality must hold for all z in ∆. Letting z = re−iθ where 0 ≤ r < 1
we obtain

Re


1− β −

∞∑
k=2

(1− βk) + αeiγ(1− k)ξk(c, δ)akr
k−1

1−
∞∑

k=2

kξk(c, δ)akr
k−1

 > 0.

By letting r → 1 through half line z = re−iθ and the mean value theorem we have

Re

[
(1− β)−

∞∑
k=2

[(1− βk) + α(1− k)]ξk(c, δ)akr
k−1

]
> 0,
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so we get

∞∑
k=2

[(1 + α)− k(α + β)]
1− β

ξk(c, δ)ak < 1.

Converesely, let (6) holds. We will show that (4) is satisfied and so f(z) ∈ τ(α, β, c, δ).
By Lemma 2.2 it is enough to show that

|w(1 + α|w1|+ β)| < |w + (1α|w1|β)|,

If

R = |w + 1− β − α|w − 1||

=
1

|z[kδ
c(f)]′|

∣∣∣∣∣2z − βz −
∞∑

k=2

[1 + (1− β) + α− αk]ξk(c, δ)akz
k

∣∣∣∣∣ .
This implies that

R >
|z|

|z[kδ
c(f)]′|

[
2− β −

∞∑
k=2

[k + (1 + α)− k(α + β)]ξk(c, δ)ak

]
.

Similarly, if L = |w − 1− β − α|w − 1|| we get

L <
|z|

|z[kδ
c(f)]′|

[
β +

∞∑
k=2

[−K + (1 + α)− k(α + β)]ξk(c, δ)ak

]
.

It is easy to verify that R− L > 0 and so the proof is completed. �

Corollary 2.4. Let f ∈ τ(α, β, c, δ) then

ak <
1− β

[(1 + α)− k(α + β)]ξk(c, δ)
, n = 2, 3, 4, · · · .

Theorem 2.5. if c1 < c2, then τ(α, β, c2, δ) ⊂ τ(α, β, c1, δ).
Proof. Let f(z) ∈ τ(α, β, c2, δ). Then we have

∞∑
k=2

[(1 + α)− k(α + β)]
1− β

ξk(c2, δ)ak < 1.
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But ξk(c, δ) is an increasing function of c, so ξk(c1, δ) < ξk(c2, δ), and hence we have

∞∑
k=2

[(1 + α)− k(α + β)]
1− β

ξk(c1, δ)ak <
∞∑

n=4

[(1 + α)− k(α + β)]
1− β

ξk(c2, δ)ak < 1,

therefore f(z) ∈ τ(α, β, c1, δ).

Theorem 2.6. (Growth Theorem) If f(z) ∈ τ(α, β, c, δ), then

|z| − (1− β)
(1− β)− (α + β)

|z|2 ≤ |kδ
c(f)| ≤ |z|+ (1− β)

(1− β)− (α + β)
|z|2. (7)

Proof. Let f(z) ∈ τ(α, β, c, δ). In view of Theorem 2.3 we have

∞∑
k=2

akξk(c, δ) <
1− β

(1− β)− (α + β)
.

Therefore

|kδ
c(f)| ≤ |z|+

∞∑
k=2

akξk(c, δ)|z|k

≤ |z|+ |z|2
∞∑

k=2

akξk(c, δ)

< |z|+ 1− β

(1− β)− (α + β)
|z|2.

and

|kδ
c(f)| ≥ |z| −

∞∑
k=2

akξk(c, δ)|z|k

≥ |z| − |z|2
∞∑

k=2

akξk(c, δ)

< |z| − 1− β

(1− β)− (α + β)
|z|2.

3.Radius of Starlikeness, Convexity and Close-toconvex

In this section we will calculate Radius of Starlikeness, Convexity and Close-to-
convexity for the class τ(α, β, c, δ).
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Theorem 3.1. Let f ∈ τ(α, β, c, δ). Then f(z) is starlike of order µ(0 ≤ µ < 1)
in |z| < r = r1(α, β, c, δ, µ) where

r1(α, β, c, δ, µ) = inf
k

[
(1− µ)[(1 + α)− k(α + β)]

(k − µ)(1− β)
ξk(c, δ)

] 1
k−1

. (8)

Proof. For 0 ≤ µ < 1 we need to show that
∣∣∣ zf ′(z)

f(z) − 1
∣∣∣ < 1− µ.

We have to show that

∣∣∣∣zf ′(z)− f(z)
f(z)

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣
−

∞∑
k=2

akz
k−1(k − 1)

1−
∞∑

k=2

akz
k−1

∣∣∣∣∣∣∣∣∣∣
≤

∞∑
k=2

ak|z|k−1(k − 1)

1−
∞∑

k=2

ak|z|k−1

< 1− µ,

⇒
∞∑

k=2

ak|z|k−1

(
k − µ

1− µ

)
< 1.

By Theorem 2.3, it is enough to consider

|z|k−1 <
(1− µ)[(1 + α)− k(α + β)]

(k − µ)(1− β)
ξk(c, δ).

This completes the proof. �

Theorem 3.2. Let f ∈ τ(α, β, c, δ). Then f(z) is convex of order µ(0 < µ < 1)
in |z| < r = r2(α, β, c, δ, µ) where

r2(α, β, c, δ, µ) = inf
k

[
(1− µ)[(1 + α)− k(α + β)]

k(k − µ)(1− β)
ξk(c, δ)

] 1
k−1

. (9)

248



A. Tehranchi, A. Moussavi, N. Vezvaei - Radius of Starlike And Partial Sum . . .

Proof. We show that
∣∣∣ zf ′′(z)

f ′(z)

∣∣∣ < 1− µ,

i.e.

∣∣∣∣∣∣∣∣∣∣
−

∞∑
k=2

k(k − 1)akz
k−1

1−

∞∑
k=2

kakz
k−1

∣∣∣∣∣∣∣∣∣∣
≤

∞∑
k=2

k(k − 1)ak|z|k−1

1−

∞∑
k=2

kak|z|k−1

< 1− µ,

⇒
∞∑

k=2

ak|z|k−1k

(
k − µ

1− µ

)
< 1.

By Theorem 2.3, it is enough letting

|z|k−1 ≤ (1− µ)[(1 + α)− k(α + β)]
k(k − µ)(1− β)

ξk(c, δ).

This completes the proof. �

Theorem 3.3. if f(z) = z −
∑∞

k=2 akz
k ∈ τ(α, β, c, δ), then f(z) is close-to-

convex of order µ(0 ≤ µ < 1) in |z| < r = r3(α, β, c, δ, µ) where

r3(α, β, c, δ, µ) = inf
k

[
(1− µ)[(1 + +α)− k(α + β)]

k(1− β)
ξk(c, δ)

] 1
k−1

. (10)

Proof. We must show that |f ′(z) − 1| ≤ 1 − µ for |z| < r = r3(α, β, c, δ, µ) when
r3(α, β, c, δ, µ) is given by (10). Now

|f ′(z)− 1| =

∣∣∣∣∣
∞∑

k=2

kakz
k−1

∣∣∣∣∣ ≤
∞∑

n=2

kak|z|k−1 ≤ 1− µ

⇒
∞∑

k=2

kak

1− µ
|z|k−1 < 1.

By Theorem 2.3, above inequality holds true if

|z|k−1 <
(1− µ)[(1 + α)− k(α + β)]

k(1− β)
ξk(c, δ).

This completes the proof. �

4 Partial Sum property of τ(α, β, c, δ)

Theorem 4.1. The τ(α, β, c, δ) is convex set.
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Proof. Let f(z) and g(z) be the arbitrary elements of τ(α, β, c, δ. Then for every
t(0 < t < 1) we show that (1− t)f(z) + tg(z) ∈ Ω(α, β, λ). Thus, we have

(1− t)f(z) + tg(z) = z
∞∑

k=2

[(1− t)ak + tbk]zk

and hence
∞∑

k=2

[(1 + α)− k(α + β)]
1− β

ξk(c, δ)[(1− t)ak + tbk] =

(1− t)
∞∑

k=2

[(1 + α)− k(α + β)]
1− β

ξk(c, δ)ak + t

∞∑
k=2

[(1 + α)− k(α + β)]
1− β

ξk(c, δ)bk < 1.

Corollary 4.2. Suppose the f(z) and g(z) belong to τ(α, β, c, δ. Then the function
h(z) defined by h(z) = 1

2(f(z) + g(z)) also belongs to τ(α, β, c, δ).

We say that g is subordinate of f denoted by g ≺ f , if g(z) = f(w(z)), where w
is an analytic Schwarz function with w(0) = 0, |w(z)| ≤ 1.

Theorem 4.3. Let f(z) ∈ τ(α, β, c, δ) and g(z) be an arbitrary element of B,
such that g ≺ f , g is subordinate to f ;

and if

gk =
1
k!

[
dk(f(w(z)))

dzk

]
z=0

, (11)

also if

∞∑
k=2

[(1 + α)− k(α + β)]|gk|

|g1|
ξk(c, δ) < (1− β), (12)

then g ∈ τ(α, β, c, δ).
Proof. Since g ≺ f , by definition, there is an analytic function w(z) such that

|w(z)| ≤ |z| and g(z) = f(w(z)). But g is the composition of two analytic functions
in the unit disk, therefore we can expand this function in terms of Taylor series at
origin as below:

g(z) =
∞∑

n=0

gnzn,
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where gn is defined in (11). Hence

g0 =
f(w(0))

0!
= 0, g1 =

w′(0)f ′(w(0))
1!

= w′(0).

Therefore, we can write

g(z) = g1(z) +
∞∑

k=2

gkz
k,

and

kδ
c(g(z)) = g1(z)−

∞∑
k=2

ξk(c, δ)gkz
k.

We must prove g(z) ∈ τ(α, β, c, δ) or

∞∑
k=2

[(1 + α)− k(α + β)]
(1− β)

ξk(c, δ)gk < 1.

By Theorem 2.3 we have

Re

[
(1− β)g1 −

∞∑
k=2

[(1− βk) + α(1− k)]ξk(c, δ)gkr
k−1

]
> 0.

Letting r → 1 and by (12) the last inequality is true and the result can be obtained.

�
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