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A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY
MULTIPLIER TRANSFORMATION
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Abstract. In this paper, we consider the multiplier transformation

Ip(n, λ)f(z) = zp +
∞∑

k=p+1

(
k + λ

p + λ

)n

akz
k

where p ∈ N, n ∈ N ∪ 0, λ ≥ 0 and we provide the sufficient conditions for
functions to be in the class B(n, µ, α, λ).
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1. Introduction and Preliminaries

Let Ap denote the class of functions of the form

f (z) = zp +
∞∑

k=p+1

akz
k, p ∈ N = {1, 2, ...}

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} .
Let Sp denote the subclass of functions that are univalent in U.
A function f ∈ Ap is said to be p-valent starlike of order α (0 ≤ α < p) in
U, if it satisfies the following inequality:

Re
(

zf ′(z)
f(z)

)
> α, z ∈ U.

We denote by S∗
p(α) the class of all such functions.

A function f ∈ Ap is said to be p-valent convex of order α (0 ≤ α < p) in U,
if and only if

Re
(

zf ′′(z)
f ′(z)

+ 1
)

> α, z ∈ U

for some α, (0 ≤ α < 1) .
We denote by Kp(α) the class of all those functions f ∈ Ap which are mul-
tivalently convex of order α in U and denote by R(α) the class of functions
in Ap which satisfy

Ref ′(z) > α, z ∈ U.
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It is well known that Kp(α) ⊂ S∗
p(α) ⊂ Sp.

If f and g are analytic functions in U, we say that f is subordinate to g,
written f ≺ g if w(0) = 0, |w(z)| < 1, for all z ∈ U. If g is univalent then
f ≺ g if and only if f(0) = g(0) and f(U) ⊆ g(U).
The following multiplier transformation was given by Sukhwinder Singh,
Sushma Gupta and Sukhjit Singh [1].
Definition 1.([1]). For f ∈ Ap, p ∈ N, n ∈ N ∪ 0, λ ≥ 0, the operator
Ip(n, λ)f(z) is defined by the following infinite series

Ip(n, λ)f(z) = zp +
∞∑

k=p+1

(
k + λ

p + λ

)n

akz
k. (1)

It is easily verified from (1) that

(p + λ) Ip(n + 1, λ)f(z) = p (1− λ) Ip(n, λ)f(z) + λz (Ip(n, λ)f(z))′ . (2)

Remark 1. If p = 1 we have

I1(n, λ)f(z) = I(n, λ)

and

(λ + 1) I(n + 1, λ)f(z) = (1− λ) I(n, λ)f(z) + λz (I(n, λ)f(z))′ ,

for z ∈ U.
Remark 2. If f ∈ An, f(z) = z +

∑∞
k=p+1 akz

k, then

I(n, λ)f(z) = z +
∞∑

k=p+1

(
k + λ

p + λ

)n

akz
k,

for z ∈ U.
In the proof of our main result we need the following lemma.
Lemma 1. ([2]) . Let u be analytic in U with u(0) = 1 and suppose that

Re
(

1 +
zu′(z)
u(z)

)
>

3α− 1
2α

, z ∈ U. (3)

Then Reu(z) > α for z ∈ U and 1
2 ≤ α < 1.

2. Main results

Definition 2. We say that a function f ∈ Ap is in the class B(n, µ, α, λ),
n ∈ N, µ ≥ 0, α ∈ [0, 1).
If ∣∣∣∣I(n + 1, λ)

z

(
z

I(n, λ)f(z)

)µ

− 1
∣∣∣∣ < 1− α, z ∈ U. (4)
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In this paper we provide a sufficient condition for functions to be in the
class B(n, µ, α, λ).
Theorem 1. For the functions f ∈ Ap, n ∈ N, µ ≥ 0, 1

2 ≤ α < 1.
If

(λ + 1)
λ

I(n + 2, λ)f(z)
I(n + 1, λ)f(z)

−µ
(λ + 1)

λ

I(n + 1, λ)f(z)
I(n, λ)f(z)

+
1
λ

(µ− 1) ≺ 1+βz, z ∈ U

(5)
where

β =
3α− 1

2α

then f ∈ B(n, µ, α, λ).
Proof. If we consider

u(z) =
I(n + 1, λ)f(z)

z

(
z

I(n, λ)f(z)

)µ

,

then u(z) is analytic in U with u(0) = 1. A simple differentiation yields

zu′(z)
u(z)

=
(λ + 1)

λ

I(n + 2, λ)f(z)
I(n + 1, λ)f(z)

− µ (λ + 1)
λ

I(n + 1, λ)f(z)
I(n, λ)f(z)

+
(µ− 1)

λ

Using (4) we get

Re
(

1 +
zu′(z)
u(z)

)
>

3α− 1
2α

.

From Lemma 1. we have

Re
(

I(n + 1, λ)f(z)
z

(
z

I(n, λ)f(z)

)µ)
> α.

Therefore, f ∈ B (n, µ, α, λ) , by Definition 2.

3. Applications of Theorem 1.

First of all, setting n = 1, µ = 1, α = 1
2 , λ = 1 in Theorem 1, we immediately

arrive at the following application of Theorem 1. we have
Corollary 1. If f ∈ A1 and

Re
(

zf ′(z) + 3z2f ′′(z) + z3f ′′′(z)
zf ′(z) + z2f ′′(z)

− zf ′(z) + z2f ′′(z)
zf ′(z)

)
> −1

2

then f ∈ B
(
1, 1, 1

2 , 1
)
.

Setting n = 1, µ = 0, α = 1
2 , λ = 1 we obtain the following interesting

consequence of Theorem 1.
Corollary 2. If f ∈ A1 and

Re
(

zf ′(z) + 3z2f ′′(z) + z3f ′′′(z)
zf ′(z) + z2f ′′(z)

)
> −3

2
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then f ∈ B
(
1, 0, 1

2 , 1
)
.

Setting n = 0, µ = 1, α = 1
2 , λ = 1 we obtain another consequence of

Theorem 1.
Corollary 3. If f ∈ A1 and

Re
(

zf ′(z) + z2f ′′(z)
zf ′(z)

− zf ′(z)
f(z)

)
> −1

2

then f ∈ B
(
0, 1, 1

2 , 1
)
.

Finally, setting n = 0, µ = 0, α = 1
2 , λ = 1 we obtain the next consequence

of Theorem 1.
Corollary 4. If f ∈ A1 and

Re
(

zf ′(z) + z2f ′′(z)
zf ′(z)

)
>

3
2

then f ∈ B
(
0, 0, 1

2 , 1
)
.
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