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ON THE HYRES-ULAM-RASSIAS STABILITY OF A FUNCTIONAL
EQUATION IN NON-ARCHIMEDEAN AND RANDOM NORMED
SPACES

HassAN AzADI KENARY

ABSTRACT. In this paper we prove the Hyres-Ulam-Rassias stability of the
following functional equation

(m+n)fx+y)  (m—n)f(z—y)
5 + 5 (1)

where m,n € N with m + n,m —n # 0, in non-Archimedean and random normed
spaces.

The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias stabil-
ity theorem that appeared in his paper: On the stability of the linear mapping in
Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

f(mz +ny) =

2000 Mathematics Subject Classification: 39B22, 39B52,39B22, 39B82, 46510.

1. INTRODUCTION

A classical question in the theory of functional equations is the following: When is
it true that a function which approximately satisfies a functional equation D must
be close to an exact solution of D?.

If the problem accepts a solution, we say that the equation D is stable. The first
stability problem concerning group homomorphisms was raised by Ulam [32] in 1940.
We are given a group G and a metric group G’ with metric d(.,.). Given € > 0, dose
there exist a 0 > 0 such that if f : G — G’ satisfies d(f(zy), f(z)f(y)) < 9, for all
x,y € G, , then a homomorphism h : G — G, exists with d(f(z),h(x)) < € for all
x e G

In the next year D.H. Hyres [10], gave a positive answer to the above question for
additive groups under the assumption that the groups are Banach spaces.

In 1978, Th. M. Rassias [25] proved a generalization of Hyres’s theorem for additive
mappings in the following way:
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Theorem 1. Let f be an approximately additive mapping from a normed vector
space I into a Banach space E’, i.e., f satisfies the inequality

f(z+y) = fle) = W)l < e(l]]" + lyll") (2)

for all x,y € F, where €, and r are constants with € > 0 and 0 < r < 1. Then there
exists a unique additive mapping 17" : E — F such that for all x € E

1 (z) = T(@)]| < )" (3)

2-2r
for all z € E. The result of Th. M. Rassias has influenced the development of what

is now called the Hyers-Ulam-Rassias stability theory for functional equations. In
1994, a generalization of Rassias’ theorem was obtained by Gavruta [8] by replacing
the bound €(||z||P + ||y||P) by a general control function ¢(x,y).

Several stability results have been recently obtained for various equations, also for
mappings with more general domains and ranges (see [1, 2, 4, 5, 7, 11, 12, 13, 14,
17, 18, 19, 20, 21, 24, 27)).

In 1897, Hensel [9] has introduced a normed space which does not have the Archimedean
property. It turned out that non-Archimedean spaces have many nice applications
[6, 15, 16, 21, 23].

In 2003, Radu[26] proved a generalization of theorem Hyres for Cauchy functional
equation in random normed spaces and many authors proved stability of various
functional equations in random normed space|[3, 28].

2. PRELIMINARIES

Definition 1. By a non-Archimedean field we mean a field K equipped with a func-

tion(valuation) |.| : K — [0,00) such that for all r, s € K, the following conditions
hold:

(¢7) |r]=0 if and only if =0

(#0) [rs| = |rlls|

(13i) |r + s| < maz{|r|,|s|}.

Definition 2. Let X be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation |.| . A function [|.|| : X — R is a non-Archimedean norm (val-
uation) if it satisfies the following conditions:

(7) ||z|| =0 if and only if x =0

(ii) |lrz|| = |rlllz]] (r € K,z € X)

(7i7) The strong triangle inequality( ultrametric); namely

|z +yll < maz{|l2|l, llyll}.  z,yeX
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Then (X, ||.||) is called a non-Archimedean space. Due to the fact that
|20 = 2| < mazfllzjp — 2|l :m <j<n—-1}  (n>m)
Definition 3. A sequence {z,} is Cauchy if and only if {z,+1 — x,} converges to

zero in a non-Archimedean space. By a complete non-Archimedean space we mean
one in which every Cauchy sequence is convergent. The most important examples

of non-Archimedean spaces are p—adic numbers. A key property of p—adic numbers
is that they do not satisfy the Archimedean axiom: for all z,y > 0, there exists an
integer n such that z < ny.

Example 1. Fix a prime number p. For any nonzero rational number x, there exists
a unique integer n, € Z such that x = £p"* , where a and b are integers not divisible
by p. Then |z|, := p~"™* defines a non-Archimedean norm on ). The completion of
Q with respect to the metric d(z,y) = |« — y|, is denoted by @, which is called the
p-adic number field. In fact, Q) is the set of all formal series » = Y % aip® where
lax| < p—1 are integers. The addition and multiplication between any two elements
of @, are defined naturally. The norm |} 7S, - arp®|, = p~" is a non-Archimedean
norm on (), and it makes @, a locally compact filed.

Definition 4. A function F' : R — [0,1] is called a distribution function if it is
nondecreasing and left-continuous, with sup;crF'(t) = 1 and inficrF(t) = 0. The
class of all distribution functions F' with F'(0) = 0 is denoted by D..

Example 2. For every a > 0, H, is the element of D, defined by

0 if t<a
Ha(t)_{ 1 if t>a (4)

Definition 5. Let X be a real vector space, ¥ be a mapping from X into D, (for
any r € X, ¥(x) is denoted by ¥,) and T be a t-norm. The triple (X, ¥, T) is called
a random normed space (briefly RN-space) iff the following conditions are satisfied:
(1) W, = Hp(t) iff x =46, the null vector;

(17) Wou(t) =T, ‘%) forall o € R, @ # 0 and = € X.

(1) Wapy(t +s) (W (t), Wy(s)), for all z,y € X and t,s > 0.

vV —

Every normed space (X, ||.||) defines a random normed space (X, ¥, Ty;) where
for every t > 0,
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and T/ is the minimum t-norm. This space is called the induced random normed
space.
If the t-norm T is such that supp<q<17T(a,a) = 1, then every RN-space (X, ¥,T) is a
metrizable linear topological space with the topology 7 (called the ¥-topology or the
(€, 0)-topology) induced by the base of neighborhoods of 6, {U (e, \)|e > 0, A € (0,1)},
where

U(e, \) ={z € X|U,(e) >1— A}

Definition 6. A sequence {z,} in an RN-space (X, V,T) converges to xz € X, in
the topology 7 (we denote limz,, = z) if lim,—0oWs, —(t) =1, VE > 0.
Definition 7. A sequence {x,} is called Cauchy sequence if for all ¢ > 0,

limp—ooVa,—s,, (t) = 1.

The RN-space (X, ¥, T) is said to be complete if every Cauchy sequence in X is
convergent.

3. NON-ARCHIMEDEAN STABILITY OF FUNCTIONAL EQUATION (1)

Throughout this section, we prove the Hyers-Ulam-Rassias stability of the following
functional equation

(m+n)f(r+y) N (m —n)f(z—vy)

flma +ny) = S ;

where m,n € N with m + n,m —n # 0, in non-Archimedean normed space.
Throughout this section, Let H be an additive semigroup and X is a complete
non-Archimedean normed space.

Theorem 2. Let ¢ : H> — [0, +00) be a function such that

p p
i 20T o e (5)
pP—00 |m|p

and let for each x € H the limit

U(z) = lim maz
p—00

{w(mkm, 0)

ml*

;0§k‘<p} (6)

exists. Suppose that f: H — X be a mapping satisfying

Hf<mx+ny> _(mAn)flzty) (m=—n)f(z—y)

/ | <uew. 0
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Then the limit

_ f(mPz)
T(x)=1
(z) = lim =2, (8)
exists for all x € H and T : H — X is a mapping satisfying
|f@) -T@)|, < W\If( 7). zeH (9)
Moreover, if
k
lim limmax{w;j§k<]’+p}=0 (10)
j—00 p—00 |m|
then T is the unique mapping satisfying (9).
Proof: Putting y = 0 in (7), we get
f(ma) 1
— — f(x < —)(x,0). 11
|2 pa)| < o0 (1)
Replacing by mPz in (11) and dividing both sides by mP, we get
fmPtla) — f(mPa) P (mPz,0)
- < (12)
mp+1 mPp |m‘p+1
X
“+o0o
for all z € H. It follows from (5) and (12) that the sequence {%} ) is a
p:
+oo
Cauchy sequence. Since X is complete, so the sequence {%} ) is convergent.
p:

Set

Using induction we see that

Hﬂm%)

" L O<k<p} (13)

Indeed, (13) holds for p = 1 by (11). Let (13) holds for p, then we obtain

_ f(x)H < L naz {kax@)

mPtlg mPHg mPx
f(mPHlz)  f(mPx f(mPz
¢zt
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k
‘;'mw{w, mm{ﬂ)@nﬂfao) o<k <p}}

- m|P m|¥
1 k.0

= —mazx ¢(mz’),0<k<p+1
Im| m|¥

So for all p € N and all z € H, (13) holds. By taking p to approach infinity in (14)
and using (6) one obtains (9). Replacing x by mPz and y by mPy respectively, in
(7) and using (5), we obtain that

(m+n)T(z+vy) N (m—n)T(z— y)

T —
(mz + ny) 5 5

If S is another mapping satisfies (9), then for z € H, we get

HT(&:) - S(a:)H = lim HT (mFz) — S(mkx)H

X k—oo ]m|k X

lim ! mam{Hme) f(mFz)|,

Y(mFe,0) ,
W§J§k<]+p =0.

IN

(mbz) — f(m*a)| )

— lim lim max
|m[ j—00p—0

Therefore T'= S. This completes the proof of uniqueness of 7T'.

Theorem 3. Let ¢ : H? — [0, +00) be a function such that

P T YN _q.
lmwm,w<mpnw)—0, zy €1, (15)
and let for each x € H the limit
: z
O(z) = phl& mazx {|m|k+11/) <mk+1’0> 0<k< p} , (16)

exists. Suppose that f: H — X is a mapping satisfying
(m+n)flz+y) (m—n)f(z—y)

|t ) - | <vew.an
2 2 X
Then the limit
x
T(x)= 1l Pl — 18
(@)= Jim mrf () (18)
exists for all x € H and T : H — X is a mapping satisfying
|f@) - T@)| < low: zeH (19)

= Iml
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Moreover, if

lim lim max {|m]k+1w (m:H,O) j<k<j —i—p} =0, (20)

j—00 p—00
then T is the unique mapping satisfying (19).

Proof: Letting y = 0 in (17), we get

| £(ma) —mf(@)|, < v(,0), (21)

for all z € H. If we replace x by — in (21), then we have

s ()], <o ().

for all x € H and all non-negative integer n. It follows from (15) and (22) that
the sequence {m? f (%)};il is a Cauchy sequence in X for all x € H. Since X is
complete, the sequence {m?f (7%} | converges for all z € H.

On the other hand, it follows from (22) that
N R N
1 ()= (G, )
ik x x
k+1 k
>_m f<mk+1>_mf(mk)
< mazx{ |mFtf T —mkf 2z i p<k<qg-1
< — mi )|, Pk <a

1 k41 X .
S|7,n|"71’a"/17{|7n’ w<mk+130>7p§k<q_1}v

for all x € H and all non-negative integers p,q with ¢ > p > 0. Letting p = 0 and
passing the limit ¢ — oo in the last inequality and using (16), we obtain (19).
The rest of the proof is similar to the proof of Theorem 2.

Corollary 1. Let v : [0,00) — [0,00) be a function satisfying

()0 o ()<

Let 6 >0 and f: H — X is a mapping satisfying

[1tme 4y — 2t @ +9) _ = mfta = )

<6 (v(J]) +(lyl)) (25)
X
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for all x,y € H. Then there exists a unique mapping 7" : H — X such that

< Ozl
X~ fm|

| £(2) - T(:E)H xeH, (26)

Proof: Using induction one can show that for all p € N,

y Lp <P 1 v(t)g%y(t). (27)
(Iml > (Iml m|

Defining ¢ : H? — [0,00) by ¢(z,y) := 6(y(|z[) + 7(lyl)). Since

1
m|

then we obtain that for all x,y € H

i 6 (2 ) <t (b () o) =0

p—00 mp n—00 |m|
Also
O(z) = lim maz {|m[F 1y [ ——0);0<k<pbs=|mp (2,0 (28)
_p—>oo mk+17 9 — p - m7 9
and

. . k+1 xz L. . T j+1 X .
il maz {1 (L E00) 55 <k < g p) = lim bt (5 50) =

Hence the result follows by Theorem 3.

Example 3. Let § > 0,0 < p <1 and 7 : [0,00) — [0,00) defined by ~(t) = tP. If
f+ H — X is a mapping satisfying

|76 4 gy - mt e ) _ G mdfe o)

< o(fl” +[y[?); =,y € H.
X

2 2
(29)
Then there exists a unique mapping T : H — X such that
Sla|?
-7 . zcH, 30
[t@-T@|, =30 e (30)
Corollary 2. Let v:[0,00) — [0,00) is a function satisfying
Y(Imlt) <A(Imhy(E)  E=0),  A(Im]) <[m| (31)
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Let 6 > 0 and f: H — X is a mapping satisfying

R | G
(32)
Then there exists a unique mapping 7' : H — X such that
)
@ - 1@ < T aen (33

Proof: Let ¢ : H? — [0,0) be defined by v (z,y) := 5(7(]w| + V(|y])>

4. RANDOM STABILITY OF FUNCTIONAL EQUATION (1)

Throughout this section, using direct method, we prove Hyers-Ulam-Rassias stability
of functional equation (1) in random normed spaces.

Theorem 3. Let X be a vector space, (Z, ¥, min) be an RN-space, and 1 : X2 — Z
be a function such that for some 0 < o < m,

\Ilw(mac,my) (t) > \I/ocw(az,y) (t) Ve,ye X, t >0 (34)
Also, for all z,y € X and t > 0
LI W oz oy (M) = 1.

If (Y, u, min) be a complete RN-space and f : X — Y is a mapping such that for
allz,y e X and t >0

Hf (et my) - Lt ) mems =) (8) 2 Wop(ag) (2), (35)

then there is a unique mapping C' : X — Y such that

f(@)—C(a) (t) = W0y (M — Q)t). (36)
Proof: Putting y = 0 in (35) we see that for all z € X,

H f(ma) —f(z) (t) > \Ilw(a:,()) (mt) (37)

m
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Replacing = by mPx in (37) and using (34), we obtain

Hogmrtle) _ pmra) ) > Uypmono)(mPHi)

mP
mPt1t
> \Ilqj)(.t,O)( P ) (38)

So by (38) we obtain

p—1 taF p—1
M f(mPax) —f(z) Z 1 = Hp-1 fmktly) _ f(mka)
mP =g M Zk:o ooy T ToaE

k=
—1
k= Nf( o) _ f(mre) mk+1

> T;f:_&(‘l’w(:c,o)( )
W (a,0) (1)

AV

This implies that

t
Paere) g () 2 Wy(0) <ak) : (39)
m

Replacing z by miz in (39), we obtain

t
[ gmetas) _pman) (8) 2 Womaz,) ()

mpP+a md Zk 0 mk+atl

t
= o (e 0
Y S

t
= U EL—
¥(z,0)
o (zpﬂ 1,,;,:’11)

t
lim ‘I/ — | =1
P(z,0) 1 k )
P,q—00 (ZP‘HI %Jrl )

then {M}Jroj is a Cauchy sequence in complete RN-space (Y, i, min), so there
n—=

mP

exist some point C(z) € Y such that lim, f(::iz) = C(z). Fix x € X and put
g =0 in (40). Then we obtain

t
Himba) gy (t) = V(a0 () : (41)

Zk 0 kI
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and so, for every € > 0, we have

> mex mix
,UJC(x)ff(x)@—i_ 6) > T (uc(x)_f( p )(f)nu'f(mz )—f(:c)(t))

mP

t
=1 (“mw—w(e)’ V(o) <ZZ_E°E+>> :

Taking the limit as p — oo, we get

1O (2)—f ) (E 4 €) = Wy 00 ((m — a)t). (42)
Since € was arbitrary by taking ¢ — 0 in (42), we obtain
1C () f2) () = W0y (M — a)t). (43)

Replacing = and y by mPx and mPy respectively, in (35) and using this fact that
limy— 00 Vo (mpa,mpy) (MPt) = 1, we get for all z,y € X and for all ¢ > 0,

(m+n)Clzty)  (m-—n)Clz—y)

C(mx +ny) = 5 5

To prove the uniqueness of the mapping C, assume that there exist another mapping
D : X — Y which satisfies (36). Since

1 (@) -D(a) (1) = lim HClnra) _ Dinba) (t). (44)
So
. t t
peomps) _pempa) () = MIN emrs) _ jmra) | 5 | 5 BD@Pe) _ fmea) | o
mPpP mP mP mP 2 mP mP 2
mP(m — a)t
> \I}w(mpm,O) ( : 92 ) ) (45)
mP(m — )t
> Yy(z,0) (zap ) :
Since limy, o % = 00, we get

mP(m — a)t

lim \I/w(x70) =1.

p—00 2aP

Therefore, it follows that for all t > 0, pc(z)—p(z)(t) = 1 and so C(x) = D(z). This
completes the proof.
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Corollary 3. Let X be a real linear space, (Z,V,min) be an RN-space and
(Y, u,min) a complete RN-space. Let p € (0,1) and zp € Z. If f : X — Y is
a mapping such that for all z,y € X and ¢t > 0

Pt maty)— et G mem =) (8) 2 L ()jaljp-tly]lp)z0 (£): (46)

then there is a unique mapping C(z) : X — Y such that

1y @)-C@) (1) 2 e (W) : (47)

Proof: Let o = mP and ¢ : X? — Z be defined by ¥(z,y) = (|||[” + ||y|[?)z0.

Corollary 4. Let X be a real linear space, (Z, ¥, min) be an RN-space and
(Y, u,min) a complete RN-space. Let zp € Z. If f: X — Y is a mapping such that
for all z,y € X and ¢ > 0

F f(ma-ty) - rtnf ) men)f@—y) (t) > s, (1), (48)
then there is a unique mapping C': X — Y such that for all z € X and ¢t > 0

Hf(@)—Ca) (1) 2= Wz ((m = 1)1). (49)

Proof: Let a =1 and v : X2 — Z be defined by 1 (z,y) = dz0.
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