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ON THE HYRES-ULAM-RASSIAS STABILITY OF A FUNCTIONAL
EQUATION IN NON-ARCHIMEDEAN AND RANDOM NORMED

SPACES

Hassan Azadi Kenary

Abstract. In this paper we prove the Hyres-Ulam-Rassias stability of the
following functional equation

f(mx+ ny) =
(m+ n)f(x+ y)

2
+

(m− n)f(x− y)
2

(1)

where m,n ∈ N with m + n,m − n 6= 0, in non-Archimedean and random normed
spaces.
The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias stabil-
ity theorem that appeared in his paper: On the stability of the linear mapping in
Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

2000 Mathematics Subject Classification: 39B22, 39B52,39B22, 39B82, 46S10.

1. Introduction

A classical question in the theory of functional equations is the following: When is
it true that a function which approximately satisfies a functional equation D must
be close to an exact solution of D?.
If the problem accepts a solution, we say that the equation D is stable. The first
stability problem concerning group homomorphisms was raised by Ulam [32] in 1940.
We are given a group G and a metric group G′ with metric d(., .). Given ε > 0, dose
there exist a δ > 0 such that if f : G → G′ satisfies d(f(xy), f(x)f(y)) < δ, for all
x, y ∈ G, , then a homomorphism h : G → G; exists with d(f(x), h(x)) < ε for all
x ∈ G?.
In the next year D.H. Hyres [10], gave a positive answer to the above question for
additive groups under the assumption that the groups are Banach spaces.
In 1978, Th. M. Rassias [25] proved a generalization of Hyres’s theorem for additive
mappings in the following way:
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Theorem 1. Let f be an approximately additive mapping from a normed vector
space E into a Banach space E′, i.e., f satisfies the inequality

||f(x+ y)− f(x)− f(y)|| ≤ ε(||x||r + ||y||r) (2)

for all x, y ∈ E, where ε, and r are constants with ε > 0 and 0 ≤ r < 1. Then there
exists a unique additive mapping T : E → F such that for all x ∈ E

||f(x)− T (x)|| ≤ 2ε
2− 2r

‖x‖r (3)

for all x ∈ E. The result of Th. M. Rassias has influenced the development of what
is now called the Hyers-Ulam-Rassias stability theory for functional equations. In
1994, a generalization of Rassias’ theorem was obtained by Gǎvruta [8] by replacing
the bound ε(‖x‖p + ‖y‖p) by a general control function φ(x, y).
Several stability results have been recently obtained for various equations, also for
mappings with more general domains and ranges (see [1, 2, 4, 5, 7, 11, 12, 13, 14,
17, 18, 19, 20, 21, 24, 27]).
In 1897, Hensel [9] has introduced a normed space which does not have the Archimedean
property. It turned out that non-Archimedean spaces have many nice applications
[6, 15, 16, 21, 23].
In 2003, Radu[26] proved a generalization of theorem Hyres for Cauchy functional
equation in random normed spaces and many authors proved stability of various
functional equations in random normed space[3, 28].

2. Preliminaries

Definition 1. By a non-Archimedean field we mean a field K equipped with a func-
tion(valuation) |.| : K → [0,∞) such that for all r, s ∈ K, the following conditions
hold:
(i) |r| = 0 if and only if r = 0
(ii) |rs| = |r||s|
(iii) |r + s| ≤ max{|r|, |s|}.
Definition 2. Let X be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation |.| . A function ||.|| : X → R is a non-Archimedean norm (val-
uation) if it satisfies the following conditions:
(i) ||x|| = 0 if and only if x = 0
(ii) ||rx|| = |r|||x|| (r ∈ K,x ∈ X)
(iii) The strong triangle inequality( ultrametric); namely

||x+ y|| ≤ max{||x||, ||y||}. x, y ∈ X
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Then (X, ||.||) is called a non-Archimedean space. Due to the fact that

||xn − xm|| ≤ max{||xj+1 − xj || : m ≤ j ≤ n− 1} (n > m)

Definition 3. A sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to

zero in a non-Archimedean space. By a complete non-Archimedean space we mean
one in which every Cauchy sequence is convergent. The most important examples

of non-Archimedean spaces are p−adic numbers. A key property of p−adic numbers
is that they do not satisfy the Archimedean axiom: for all x, y > 0, there exists an
integer n such that x < ny.

Example 1. Fix a prime number p. For any nonzero rational number x, there exists
a unique integer nx ∈ Z such that x = a

bp
nx , where a and b are integers not divisible

by p. Then |x|p := p−nx defines a non-Archimedean norm on Q. The completion of
Q with respect to the metric d(x, y) = |x− y|p is denoted by Qp which is called the
p-adic number field. In fact, Qp is the set of all formal series x =

∑∞
k≥nx

akp
k where

|ak| ≤ p−1 are integers. The addition and multiplication between any two elements
of Qp are defined naturally. The norm |

∑∞
k≥nx

akp
k|p = p−nx is a non-Archimedean

norm on Qp and it makes Qp a locally compact filed.

Definition 4. A function F : R → [0, 1] is called a distribution function if it is
nondecreasing and left-continuous, with supt∈RF (t) = 1 and inft∈RF (t) = 0. The
class of all distribution functions F with F (0) = 0 is denoted by D+.

Example 2. For every a ≥ 0, Ha is the element of D+ defined by

Ha(t) =

{
0 if t ≤ a
1 if t > a

. (4)

Definition 5. Let X be a real vector space, Ψ be a mapping from X into D+ (for
any x ∈ X, Ψ(x) is denoted by Ψx) and T be a t-norm. The triple (X,Ψ, T ) is called
a random normed space (briefly RN -space) iff the following conditions are satisfied:
(i) Ψx = H0(t) iff x = θ, the null vector;
(ii) Ψαx(t) = Ψx

(
t
|α|

)
for all α ∈ R, α 6= 0 and x ∈ X.

(iii) Ψx+y(t+ s) ≥ T (Ψx(t),Ψy(s)), for all x, y ∈ X and t, s > 0.

Every normed space (X, ||.||) defines a random normed space (X,Ψ, TM ) where
for every t > 0,

Ψu(t) =
t

t+ ||u||
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and TM is the minimum t-norm. This space is called the induced random normed
space.
If the t-norm T is such that sup0<a<1T (a, a) = 1, then every RN -space (X,Ψ, T ) is a
metrizable linear topological space with the topology τ (called the Ψ-topology or the
(ε, δ)-topology) induced by the base of neighborhoods of θ, {U(ε, λ)|ε > 0, λ ∈ (0, 1)},
where

U(ε, λ) = {x ∈ X|Ψx(ε) > 1− λ}

Definition 6. A sequence {xn} in an RN -space (X,Ψ, T ) converges to x ∈ X, in
the topology τ (we denote limxn = x) if limn→∞Ψxn−x(t) = 1, ∀t > 0.
Definition 7. A sequence {xn} is called Cauchy sequence if for all t > 0,

limn→∞Ψxn−xm(t) = 1.

The RN -space (X,Ψ, T ) is said to be complete if every Cauchy sequence in X is
convergent.

3. Non-Archimedean Stability of Functional Equation (1)

Throughout this section, we prove the Hyers-Ulam-Rassias stability of the following
functional equation

f(mx+ ny) =
(m+ n)f(x+ y)

2
+

(m− n)f(x− y)
2

where m,n ∈ N with m+ n,m− n 6= 0, in non-Archimedean normed space.
Throughout this section, Let H be an additive semigroup and X is a complete
non-Archimedean normed space.

Theorem 2. Let ψ : H2 → [0,+∞) be a function such that

lim
p→∞

ψ(mpx,mpy)
|m|p

= 0; x, y ∈ H, (5)

and let for each x ∈ H the limit

Ψ(x) = lim
p→∞

max

{
ψ(mkx, 0)
|m|k

; 0 ≤ k < p

}
(6)

exists. Suppose that f : H → X be a mapping satisfying∥∥∥∥f(mx+ ny)− (m+ n)f(x+ y)
2

− (m− n)f(x− y)
2

∥∥∥∥
X
≤ ψ(x, y). (7)
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Then the limit
T (x) = lim

p→∞
f(mpx)
mp

, (8)

exists for all x ∈ H and T : H → X is a mapping satisfying∥∥∥f(x)− T (x)
∥∥∥
X
≤ 1
|m|

Ψ(x). x ∈ H (9)

Moreover, if

lim
j→∞

lim
p→∞

max

{
ψ(mkx, 0)
|m|k

; j ≤ k < j + p

}
= 0 (10)

then T is the unique mapping satisfying (9).

Proof: Putting y = 0 in (7), we get∥∥∥∥f(mx)
m

− f(x)
∥∥∥∥
X
≤ 1
|m|

ψ(x, 0). (11)

Replacing x by mpx in (11) and dividing both sides by mp, we get∥∥∥∥∥f(mp+1x)
mp+1

− f(mpx)
mp

∥∥∥∥∥
X

≤ ψ(mpx, 0)
|m|p+1

(12)

for all x ∈ H. It follows from (5) and (12) that the sequence
{
f(mpx)
mp

}+∞

p=1
is a

Cauchy sequence. Since X is complete, so the sequence
{
f(mpx)
mp

}+∞

p=1
is convergent.

Set
T (x) := lim

p→∞
f(mpx)
mp

.

Using induction we see that∥∥∥∥f(mpx)
mp

− f(x)
∥∥∥∥
X
≤ 1
|m|

max

{
ψ(mkx, 0)
|m|k

; 0 ≤ k < p

}
. (13)

Indeed, (13) holds for p = 1 by (11). Let (13) holds for p, then we obtain∥∥∥∥∥f(mp+1x)
mp+1

− f(x)

∥∥∥∥∥
X

=

∥∥∥∥∥f(mp+1x)
mp+1

± f(mpx)
mp

− f(x)

∥∥∥∥∥
X

(14)

≤ max

{∥∥∥∥∥f(mp+1x)
mp+1

− f(mpx)
mp

∥∥∥∥∥
X

,

∥∥∥∥f(mpx)
mp

− f(x)
∥∥∥∥
X

}
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≤ 1
|m|

max

{
ψ(mpx, 0)
|m|p

, max

{
ψ(mkx, 0)
|m|k

; 0 ≤ k < p

}}

=
1
|m|

max

{
ψ(mkx, 0)
|m|k

; 0 ≤ k < p+ 1

}
.

So for all p ∈ N and all x ∈ H, (13) holds. By taking p to approach infinity in (14)
and using (6) one obtains (9). Replacing x by mpx and y by mpy respectively, in
(7) and using (5), we obtain that

T (mx+ ny) =
(m+ n)T (x+ y)

2
+

(m− n)T (x− y)
2

.

If S is another mapping satisfies (9), then for x ∈ H, we get∥∥∥T (x)− S(x)
∥∥∥
X

= lim
k→∞

1
|m|k

∥∥∥T (mkx)− S(mkx)
∥∥∥
X

≤ lim
k→∞

1
|m|k

max
{∥∥∥T (mkx)− f(mkx)

∥∥∥, ∥∥∥S(mkx)− f(mkx)
∥∥∥
X

}
≤ 1

|m|
lim
j→∞

lim
p→∞

max

{
ψ(mkx, 0)
|m|k

; j ≤ k < j + p

}
= 0.

Therefore T = S. This completes the proof of uniqueness of T .

Theorem 3. Let ψ : H2 → [0,+∞) be a function such that

lim
p→∞

|m|pψ
(
x

mp
,
y

mp

)
= 0; x, y ∈ H, (15)

and let for each x ∈ H the limit

Θ(x) = lim
p→∞

max

{
|m|k+1ψ

(
x

mk+1
, 0
)

; 0 ≤ k < p

}
, (16)

exists. Suppose that f : H → X is a mapping satisfying∥∥∥∥f(mx+ ny)− (m+ n)f(x+ y)
2

− (m− n)f(x− y)
2

∥∥∥∥
X
≤ ψ(x, y). (17)

Then the limit
T (x) = lim

p→∞
mpf

(
x

mp

)
(18)

exists for all x ∈ H and T : H → X is a mapping satisfying∥∥∥f(x)− T (x)
∥∥∥
X
≤ 1
|m|

Θ(x); x ∈ H (19)
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Moreover, if

lim
j→∞

lim
p→∞

max

{
|m|k+1ψ

(
x

mk+1
, 0
)

; j ≤ k < j + p

}
= 0, (20)

then T is the unique mapping satisfying (19).

Proof: Letting y = 0 in (17), we get∥∥∥f(mx)−mf(x)
∥∥∥
X
≤ ψ(x, 0), (21)

for all x ∈ H. If we replace x by x
mp+1 in (21), then we have∥∥∥∥mpf

(
x

mp

)
−mp+1f

(
x

mp+1

)∥∥∥∥
X
≤ |m|pψ

(
x

mp+1
, 0
)
, (22)

for all x ∈ H and all non-negative integer n. It follows from (15) and (22) that
the sequence

{
mpf

(
x
mp

)}∞
p=1

is a Cauchy sequence in X for all x ∈ H. Since X is
complete, the sequence

{
mpf

(
x
mp

)}∞
n=1

converges for all x ∈ H.
On the other hand, it follows from (22) that∥∥∥∥mpf

(
x

mp

)
−mqf

(
x

mq

)∥∥∥∥
X

(23)

=

∥∥∥∥∥∥
q−1∑
k=p

mk+1f

(
x

mk+1

)
−mkf

(
x

mk

)∥∥∥∥∥∥
X

≤ max

{∥∥∥∥mk+1f

(
x

mk+1

)
−mkf

(
x

mk

)∥∥∥∥
X

; p ≤ k < q − 1
}

≤ 1
|m|

max

{
|m|k+1ψ

(
x

mk+1
, 0
)

; p ≤ k < q − 1
}
,

for all x ∈ H and all non-negative integers p, q with q > p ≥ 0. Letting p = 0 and
passing the limit q →∞ in the last inequality and using (16), we obtain (19).
The rest of the proof is similar to the proof of Theorem 2.

Corollary 1. Let γ : [0,∞) → [0,∞) be a function satisfying

γ

(
t

|m|

)
≤ γ

(
1
|m|

)
γ(t) (t ≥ 0), γ

(
1
|m|

)
<

1
|m|

. (24)

Let δ > 0 and f : H → X is a mapping satisfying∥∥∥∥f(mx+ ny)− (m+ n)f(x+ y)
2

− (m− n)f(x− y)
2

∥∥∥∥
X
≤ δ (γ(|x|) + γ(|y|)) (25)
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for all x, y ∈ H. Then there exists a unique mapping T : H → X such that∥∥∥f(x)− T (x)
∥∥∥
X
≤ δγ(|x|)

|m|
; x ∈ H, (26)

Proof: Using induction one can show that for all p ∈ N ,

γ

(
t

|m|p
)
≤ γp

(
1
|m|

)
γ(t) ≤ 1

|m|p
γ(t). (27)

Defining ψ : H2 → [0,∞) by ψ(x, y) := δ(γ(|x|) + γ(|y|)). Since

|m|γ
(

1
|m|

)
< 1,

then we obtain that for all x, y ∈ H

lim
p→∞

|m|pψ
(
x

mp
,
y

mp

)
≤ lim

n→∞

(
|m|γ

(
1
|m|

))p
ψ(x, y) = 0.

Also

Θ(x) = lim
p→∞

max

{
|m|k+1ψ

(
x

mk+1
, 0
)

; 0 ≤ k < p

}
= |m|ψ

(
x

m
, 0
)
, (28)

and

lim
j→∞

lim
p→∞

max

{
|m|k+1ψ

(
x

mk+1
, 0
)

; j ≤ k < j + p

}
= lim

j→∞
|m|j+1ψ

(
x

mj+1
, 0
)

= 0.

Hence the result follows by Theorem 3.

Example 3. Let δ > 0, 0 < p < 1 and γ : [0,∞) → [0,∞) defined by γ(t) = tp. If
f : H → X is a mapping satisfying∥∥∥∥f(mx+ ny)− (m+ n)f(x+ y)

2
− (m− n)f(x− y)

2

∥∥∥∥
X
≤ δ(|x|p + |y|p); x, y ∈ H.

(29)
Then there exists a unique mapping T : H → X such that∥∥∥f(x)− T (x)

∥∥∥
X
≤ δ|x|p

|m|
; x ∈ H, (30)

Corollary 2. Let γ : [0,∞) → [0,∞) is a function satisfying

γ(|m|t) ≤ γ(|m|)γ(t) (t ≥ 0), γ(|m|) < |m| (31)
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Let δ > 0 and f : H → X is a mapping satisfying∥∥∥∥f(mx+ ny)− (m+ n)f(x+ y)
2

− (m− n)f(x− y)
2

∥∥∥∥
X
≤ δ

(
γ(|x|)+γ(|y|)

)
; x, y ∈ H

(32)
Then there exists a unique mapping T : H → X such that∥∥∥f(x)− T (x)

∥∥∥
X
≤ δγ(|x|)

|m|
; x ∈ H, (33)

Proof: Let ψ : H2 → [0,∞) be defined by ψ(x, y) := δ
(
γ(|x|+ γ(|y|)

)
.

4. Random Stability of Functional Equation (1)

Throughout this section, using direct method, we prove Hyers-Ulam-Rassias stability
of functional equation (1) in random normed spaces.

Theorem 3. Let X be a vector space, (Z,Ψ,min) be an RN-space, and ψ : X2 → Z
be a function such that for some 0 < α < m,

Ψψ(mx,my)(t) ≥ Ψαψ(x,y)(t). ∀x, y ∈ X, t > 0 (34)

Also, for all x, y ∈ X and t > 0

lim
n→∞

Ψψ(mpx,mpy)(m
pt) = 1.

If (Y, µ,min) be a complete RN-space and f : X → Y is a mapping such that for
all x, y ∈ X and t > 0

µ
f(mx+ny)− (m+n)f(x+y)

2
− (m−n)f(x−y)

2

(t) ≥ Ψψ(x,y)(t), (35)

then there is a unique mapping C : X → Y such that

µf(x)−C(x)(t) ≥ Ψψ(x,0)((m− α)t). (36)

Proof: Putting y = 0 in (35) we see that for all x ∈ X,

µ f(mx)
m

−f(x)
(t) ≥ Ψψ(x,0)(mt). (37)
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Replacing x by mpx in (37) and using (34), we obtain

µ f(mp+1x)

mp+1 − f(mpx)
mp

(t) ≥ Ψψ(mpx,0)(m
p+1t)

≥ Ψψ(x,0)

(
mp+1t

αp

)
. (38)

So by (38) we obtain

µ f(mpx)
mp −f(x)

p−1∑
k=0

tαk

mk+1

 = µ∑p−1

k=0

f(mk+1x)

mk+1 − f(mkx)

mk

p−1∑
k=0

tαk

mk+1


≥ T p−1

k=0

(
µ f(mk+1x)

mk+1 − f(mkx)

mk

(
tαk

mk+1

))
≥ T p−1

k=0 (Ψψ(x,0)(t))
= Ψψ(x,0)(t).

This implies that

µ f(mpx)
mp −f(x)

(t) ≥ Ψψ(x,0)

(
t∑p−1

k=0
αk

mk+1

)
. (39)

Replacing x by mqx in (39), we obtain

µ f(mp+qx)

mp+q − f(mqx)
mq

(t) ≥ Ψψ(mqx,0)

(
t∑p−1

k=0
αk

mk+q+1

)

≥ Ψψ(x,0)

(
t∑p−1

k=0
αk+q

mk+q+1

)
(40)

= Ψψ(x,0)

 t∑p+q−1
k=q

αk

mk+1

 .
As

lim
p,q→∞

Ψψ(x,0)

 t∑p+q−1
k=q

αk

mk+1

 = 1,

then
{
f(mpx)
mp

}+∞

n=1
is a Cauchy sequence in complete RN-space (Y, µ,min), so there

exist some point C(x) ∈ Y such that limn→∞
f(mpx)
mp = C(x). Fix x ∈ X and put

q = 0 in (40). Then we obtain

µ f(mpx)
mp −f(x)

(t) ≥ Ψψ(x,0)

(
t∑p−1

k=0
αk

mk+1

)
. (41)
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and so, for every ε > 0, we have

µC(x)−f(x)(t+ ε) ≥ T

(
µ
C(x)− f(mpx)

mp
(ε), µ f(mpx)

mp −f(x)
(t)
)

≥ T

(
µ
C(x)− f(mpx)

mp
(ε),Ψψ(x,0)

(
t∑p−1

k=0
αk

mk+1

))
.

Taking the limit as p→∞, we get

µC(x)−f(x)(t+ ε) ≥ Ψψ(x,0)((m− α)t). (42)

Since ε was arbitrary by taking ε→ 0 in (42), we obtain

µC(x)−f(x)(t) ≥ Ψψ(x,0)((m− α)t). (43)

Replacing x and y by mpx and mpy respectively, in (35) and using this fact that
limp→∞ Ψψ(mpx,mpy)(mpt) = 1, we get for all x, y ∈ X and for all t > 0,

C(mx+ ny) =
(m+ n)C(x+ y)

2
+

(m− n)C(x− y)
2

.

To prove the uniqueness of the mapping C, assume that there exist another mapping
D : X → Y which satisfies (36). Since

µC(x)−D(x)(t) = lim
n→∞

µC(mpx)
mp −D(mpx)

mp
(t). (44)

So

µC(mpx)
mp −D(mpx)

mp
(t) ≥ min

{
µC(mpx)

mp − f(mpx)
mp

(
t

2

)
, µD(mpx)

mp − f(mpx)
mp

(
t

2

)}
≥ Ψψ(mpx,0)

(
mp(m− α)t

2

)
(45)

≥ Ψψ(x,0)

(
mp(m− α)t

2αp

)
.

Since limp→∞
mp(m−α)

2αp = ∞, we get

lim
p→∞

Ψψ(x,0)
mp(m− α)t

2αp
= 1.

Therefore, it follows that for all t > 0, µC(x)−D(x)(t) = 1 and so C(x) = D(x). This
completes the proof.
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Corollary 3. Let X be a real linear space, (Z,Ψ,min) be an RN-space and
(Y, µ,min) a complete RN-space. Let p ∈ (0, 1) and z0 ∈ Z. If f : X → Y is
a mapping such that for all x, y ∈ X and t > 0

µ
f(mx+ny)− (m+n)f(x+y)

2
− (m−n)f(x−y)

2

(t) ≥ Ψ(||x||p+||y||p)z0(t), (46)

then there is a unique mapping C(x) : X → Y such that

µf(x)−C(x)(t) ≥ Ψ‖x‖p

(
(m−mp)t

2

)
. (47)

Proof: Let α = mp and ψ : X2 → Z be defined by ψ(x, y) = (||x||p + ||y||p)z0.

Corollary 4. Let X be a real linear space, (Z,Ψ,min) be an RN-space and
(Y, µ,min) a complete RN-space. Let z0 ∈ Z. If f : X → Y is a mapping such that
for all x, y ∈ X and t > 0

µ
f(mx+ny)− (m+n)f(x+y)

2
− (m−n)f(x−y)

2

(t) ≥ Ψδz0(t), (48)

then there is a unique mapping C : X → Y such that for all x ∈ X and t > 0

µf(x)−C(x)(t) ≥ Ψδz0((m− 1)t). (49)

Proof: Let α = 1 and ψ : X2 → Z be defined by ψ(x, y) = δz0.
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